
A Constructive Approach for the Generation
of Underwater Environments

Ryan Abela
Institute of Digital Games

University of Malta
ryan.abela.01@um.edu.mt

Antonios Liapis
Institute of Digital Games

University of Malta
antonios.liapis@um.edu.mt

Georgios N. Yannakakis
Institute of Digital Games

University of Malta
georgios.yannakakis@um.edu.mt

ABSTRACT
This paper introduces Coralize, a library of generators for
marine organisms such as corals and sponges. Using con-
structive algorithms, Coralize can generate stony corals via
L-system grammars, soft corals via leaf venation algorithms
and sponges via nutrient-based mesh growth. The genera-
tive algorithms are parameterizable, allowing a user to ad-
just the parameters in order to create visually appealing 3D
meshes. Such meshes can be used to automatically populate
a seabed or reef, in order to create a biologically realistic and
aesthetically pleasing underwater environment.

1. INTRODUCTION
Procedural content generation (PCG) has been used in the

game industry for decades, both for creating unpredictable,
ever-changing gameplay experiences but also for speeding
up game development. Although several commercial games
have received acclaim for their (usually game-specific) gen-
erators, arguably the most successful application of PCG in
the game industry — at least in terms of ubiquitousness of
use — is SpeedTree (IDV 2011). SpeedTree is a middleware
tool, compatible with several popular game engines, which
is used during development to create vast, detailed forest
scenes or other virtual biomes with rich vegetation. The ap-
peal of PCG middleware tools is that they alleviate designer
and artist effort for what is essentially optional content [17];
such content is taxing to create manually but only consti-
tutes a backdrop for the scene where the actual game action
takes place. In order to be as generalizable and attractive to
a broad user base, PCG middleware must use sophisticated
and configurable generative algorithms, ensuring the gener-
ation of both realistic (e.g. resembling real-world objects)
and visually appealing artifacts which can be customized by
designers to suit their needs.

Motivated by the lack of appropriate tools for and PCG
studies on underwater ecosystems, this paper introduces
Coralize, a middleware tool for the generation of underwater
environments. Coralize is a plugin for Unity3D (Unity Tech-

nologies 2015), and comes with several algorithms for gen-
erating different marine organisms commonly found in coral
reefs. Coralize has been built on the vision of an underwater
SpeedTree application; in that sense it is a complete mixed-
initiative co-creation tool [19] for underwater environments,
with several subcomponents. This paper, however, focuses
on the methods used to generate 3D meshes of hard corals
(via L-systems), soft corals (via leaf venation algorithms)
and sponges (via accretive growth).

The key goal of Coralize is to enhance the visual quality
and realism of underwater scenes, in a quick yet control-
lable fashion. Speed is ensured by the constructive methods
implemented, which often include a simplified (and compu-
tationally efficient) model of complex biological processes,
while customizability is ensured by the numerous parameters
which can be configured by the designer; different parame-
ter setups result in quite visually disparate meshes. Cor-
alize also comes with a user interface for the placement of
generated corals and sponges in an underwater scene. Place-
ment can be done manually, or it can simulate the real-world
growth of reefs and can be impacted by water currents.

2. RELATED WORK
This section situates the generative methods implemented

in Coralize in the context of the academic research and com-
mercial praxis of PCG, and provides an overview of coral
ecosystems as well as on the coral generation and leaf vena-
tion algorithms that the methods of Coralize build on.

2.1 Procedural Game Content Generation
Game content has often been generated procedurally for

the purposes of speeding up development and reducing the
effort of artists. An example of this is SpeedTree, which is
able to generate unique yet realistic trees (along with their
3D meshes, textures, and foliage) within minutes. SpeedTree
has been used extensively in a plethora of large commercial
games, as it relieves artists from the task of hand-crafting
3D meshes and textures of trees — a task which is cum-
bersome and lengthy yet of minor importance to the game’s
identity and style. Other tools which automate cumber-
some yet trivial tasks include terrain generators, which al-
low for the creation of vast swathes of terrain meshes (often
including realistic geological simulations such as erosion and
river generation) quickly and effortlessly. Such generators
are usually highly customizable, allowing the designers and
artists to tweak the algorithmic parameters in order to en-
sure that the content produced fit the intended purpose (e.g.
an island landmass) and style (e.g. an alpine treeline).



Approaching PCG as an academic field, Togelius et al.
provide a taxonomy of generators, making a distinction be-
tween search-based approaches and constructive approaches
[17]. Search-based approaches target a specific objective,
from time spent in combat in generated shooter levels [2] to
visual appeal of generated spaceships [11]. Constructive ap-
proaches use algorithms which are carefully tuned to create
desirable results, but do not test the quality of those results
after generation is complete; examples of such approaches
include grammar-based generators of SpeedTree or cellular
automata for generating caves [8]. The algorithms described
in this paper follow constructive approaches; evaluating the
quality of the generated marine organisms is beyond the
scope of this project.

Another distinction made by Togelius et al. is between
necessary and optional content [17]. Necessary content, such
as game levels or the avatar’s statistics, can not be omit-
ted without making the game unplayable; it is important
that such content are of adequate quality or at least sat-
isfy certain constraints on playability, e.g. that the hero
is able to reach the exit of a generated dungeon [10]. Op-
tional content, on the other hand, serve a secondary purpose
(e.g. as background objects) and if omitted the game experi-
ence may be poorer but still enjoyable; examples of optional
content include generated textures [6] or generated rocks
[5]. The corals and sponges generated by Coralize are sim-
ilarly optional, acting as an aesthetically pleasing backdrop
to an underwater setting; as optional content, the construc-
tive methods suffice since there is no risk of rendering the
game unplayable.

2.2 Coral Reef Ecosystems
Coral reefs are fascinating environments brimming with

sea life and awash with striking colors, which are often found
in the tropics. These reefs are home to thousands of differ-
ent organisms and sea plants, making them one of the most
biodiverse environments. A detailed overview on corals and
reefs can be found in The Encyclopedia of Modern Coral
Reefs [7]. As their name suggests, the defining feature of
these underwater environments are corals: corals are cal-
cium carbonate structures usually made up of layers of ex-
crement. Calcium carbonate is excreted over time by thou-
sands of tiny organisms called polyps. Polyp biology may
vary between one family of coral to another. Polyps in trop-
ical corals photosynthesize, requiring clear waters which are
exposed to significant amounts of sunlight. In contrast, deep
water corals feed by preying on zooplankton which drifts
past, and can survive without sunlight. Due to the need for
a steady stream of water, rich in zooplankton, water cur-
rents are an important factor for deep water corals [13]. De-
spite the large diversity of shape, size and types, corals can
be classified into two main orders: (a) Hard corals (Scle-
ractinia) such as brain, star, staghorn, elkhorn and pillar
corals, and (b) Soft corals (Alcyonacea) such as sea fans,
sea whips, and sea rods. Figure 1 shows examples of real-
world corals of both orders. Sponges are also commonly
found in reef systems; sponges contribute to coral growth
by excreting nutrients vital to the polyps’ survival. Sponges
are among the simplest multicellular organisms as they lack
a nervous, digestive or circulatory system. Sponges obtain
food, oxygen and dispose of waste through their numerous
small pores. Since sponges are very different from corals, all
underwater organisms studied in this paper are referred to

Diploria labyrinthi-
formis

Lophelia
pertusa

Acropora pulchra

Dendronephthya
klunzingeri

Iciligorgia schrammi Leptogorgia sarmen-
tosa

Figure 1: Top: examples of hard corals (Scleractinia); Bot-
tom: examples of soft corals (Alcyonacea). All images shown
are in the public domain.

as marine sessile organisms.

2.3 PCG for Marine Sessile Organisms
Unlike other organisms in nature such as vegetation, pro-

cedural content generation has paid little to no attention
to the generation of marine organisms. While underwater
environments have not been the target of procedural gener-
ation for games, there have been some previous attempts to
visually model marine sessile organisms and reefs, either in
2D or in 3D.

2.3.1 Mesh Generation of Marine Sessile Organisms
In their book “The Algorithmic Beauty of Seaweeds,

Sponges and Corals”, Kaandorp and Kübler analyzed in de-
tail the morphology of various marine sessile organisms, fo-
cusing on how they grew and what affects their structural
form [9]. Among the examples in the book, stony corals like
Pocillopora damicornis were shown to change their struc-
ture depending on their environment: stony corals exposed
to currents have a much denser structure, due to the fact
that they are exposed to more nutrients.

Kaandorp and Kübler consider several different techniques
to model coral and sponges, including L-systems [16], but
the most successful results were obtained by the accretive
growth model. This technique involves growing a 3D mesh
outwards by influencing it via external environmental fea-
tures like light or water current. Kaandorp and Kübler
modeled nutrient distribution in fluid flow based on Lat-
tice Boltzmann techniques [4] with impressive results. The
only downside of these techniques is that they are computa-
tionally intensive and are not scalable [12] (e.g. can create
a single coral at a time).

Using an approach different to Kaandorp and Kübler,
Meister [12] studied the procedural generation of 3D repre-
sentations of a whole reef (rather than a single coral). Study-
ing the structure of the cold water coral Lophelia pertusa,



Meister derived an L-system grammar which produced 3D
models visually similar to the corals he was studying. The
hard coral generative process used in this paper is largely
based on the grammar of [12].

2.3.2 Leaf Venation
For the procedural generation of vegetation, considerable

attention has been given to algorithms which create the veins
of leaves (leaf venation). While leaf venation may seem out
of context for the purposes of marine organisms, the struc-
ture of many soft corals is similar to that of leaf veins: the
algorithms in this paper for soft coral generation were in-
spired by leaf venation.

Leaf venation is concerned with the pattern of veins on a
leaf blade. Leaf veins are used to supply water and minerals
originating from the root of the plant to the leaf. While
several biological theories explain the formation of leaf veins,
the most recognized theory is the canalization hypothesis
[15]. According to this hypothesis, a hormone (auxin) found
in the leaf blade flows towards veins, creating a canal trail
analogous to water streams carving river beds.

A class of biologically motivated algorithms have been
suggested by Runions et al. [14]:

Open Leaf Venation which models open leaf veins in 2D.
In these leaf patterns, veins branch out of a root seed
in the middle of the leaf blade, and do not rejoin. The
veins are represented as nodes in a directed acyclic
graph; new vein nodes are created on each iteration
by ‘extending’ a vein node towards the auxins which
are influencing it. This is done by iterating through
all the auxins and finding out the closest vein node
to each source. If a vein has one (or more) sources
influencing it, a new child vein node is created in the
direction of the auxin(s) affecting it.

Closed Leaf Venation which creates closed leaf veins, i.e.
veins growing towards the same auxin source. Runions
et. al. formalize this concept by using the relative
neighborhood [18] of the auxins.

3. GENERATING MARINE ORGANISMS
Coralize is a middleware tool for the Unity3D game engine

for the purposes of creating underwater scenes through pro-
cedurally generated corals, sponges and other marine sessile
organisms. At its current iteration, Coralize can procedu-
rally generate 3 different types of marine sessile organisms:
stony corals, soft corals and sponges.

3.1 Stony Corals
The generative algorithms for stony coral 3D models are

largely based on Meister’s grammars for Lophelia pertusa
[12]. The self similarity observed in many hard corals makes
L-systems an ideal algorithm for generating this type of
structures. Towards that end, the L-system C# library1

was modified and integrated within Unity3D. The L-system
library creates 3D meshes via turtle graphics, with the turtle
receiving the following commands: move forward (F), turn
(+ or -), pitch (^ or &), roll (/ or \), start a branch ([),
end a branch (]) and change thickness (#). The commands
of the core library were modified to support stochasticity in
the generative process, allowing for grammars to specify an

1https://code.google.com/p/lsystems-csharp-lib

2 iters. 3 iterations 4 iterations 5 iterations 9 iterations

Figure 2: Stony coral growth via an L-system grammar.

(a) (b) (c)

(d) (e)

Figure 3: Different stony corals generated using the 1st (a,
b, c), 2nd (d) and 3rd (e) L-system grammar.

additional parameter representing variance. For instance,
rather than F(5) to move the turtle 5 steps forward, the
grammar can contain a F(5,1) command which moves the
turtle between 4 and 6 steps forward. The introduction of
the variance parameter ensures that while grammars pro-
duce the same coral structure, small variations make each
stony coral different from the other.

The L-System grammar library outputs a string of com-
mands after production rules are applied. A 3D mesh is de-
rived out of this string via turtle graphics: the initial state of
the cursor (turtle) is pushed in a stack, including its transla-
tion, rotation (initially [0,0,0]) and width parameters. The
string of turtle commands is then parsed character by char-
acter. If the character is F (forward command), a horizontal
cylinder mesh is constructed with the base at [0,0,0] and
the top at [Fsteps, 0 , 0]; Fsteps is a configurable parameter
(see below) and the cylinder’s width is stored in the current
state. The cylinder is rotated and translated to the values of
the current state, and the current state is updated to match
the position of the cylinder’s top. In case of rotation com-
mands (+, -, ^, &,/, \), the rotation of the current state is
updated, while change thickness commands (#) update the
cylinder’s width at the current state. If the character is a [,
a copy of the current state is pushed onto the stack, while
if the character is a ] the current state is popped out of the
stack. Figure 2 shows an example of turtle graphics growing
the mesh as the L-system iterations increase.

Coralize allows a user to customize the generative process
of stony corals by adjusting the following parameters:

Grammar: Coralize uses three different grammars for the
L-systems of stony coral generation: two variations of
the Lophelia pertusa grammar used in [12] and a third
variation for generating flatter corals.

Iterations: the number of L-system productions performed.



2

1

3

4

(a)

2

1

3

4

(b)

2 4

(c)

Figure 4: Vein growth in the open venation algorithm.

Thickness: affects the thickness of certain commands.

Thickness Variance: affects the thickness variance of cer-
tain commands.

Mesh Detail: the number of edges of the 3D cylinder pro-
duced during a forward (F) command.

Figure 3 shows some different structures which can be
created with the stony coral generation algorithm.

3.2 Soft Corals
Although the biological processes which form these pat-

terns might be different, patterns in most soft corals are
visually similar to those of leaf veins. Both open and closed
venation patterns of leaves (described in Section 2.3.2) can
be found in soft corals. Coralize uses an algorithm suggested
by Runions et al. [14], adapting it to work in 3D — instead
of 2D lines in the original implementation.

Veins are represented as nodes in a directed acyclic graph
G = 〈V,E〉 where V is the set of vein nodes (representing
points of the vein) and E is the set of edges connecting
these vein nodes. The root of graph G is the initial seed
specified by the user. Each auxin is represented by a point
in 3D space; these points are generated on each iteration at
random positions within the edges of the leaf. Auxins are
removed if they are near vein nodes or other auxins.

Figure 4 shows how the algorithm grows veins (black con-
nected nodes) towards auxins (green circles): (a) for each
auxin, the closest vein node is found; (b) new vein nodes
(red circles) are created in the direction of influencing aux-
ins; (c) the two auxins are too close to at least one vein node
and are removed while the others remain.

Coralize extends the algorithm of Runions et al. to gen-
erate 3D meshes, allowing auxin sources to be placed in 3D
space with veins growing towards them. Veins in the 3D
mesh are represented as cylinders of variable thickness. Cal-
culating vein thickness builds on the assumption that any
vein that spawns a child vein becomes slightly thicker. Ev-
ery vein node has a thickness index TI (initialized to 1);
when a new vein node is created, all its ancestors (up to
the root vein node) increase their TI by 1, as illustrated
in Fig. 5a. The root always has the highest TI value. TI
is translated into the width of the cylinders’ bases via a
process illustrated in Fig. 5: the thickness indexes are nor-
malized (through division with the root’s TI), and then are
mapped to a thickness curve resulting to the actual width
of each cylinder’s base.

Coralize allows a user to customize the generative process
of soft corals by adjusting the following parameters:

(a) Newly created nodes (red) increase the thick-
ness index of their ancestor nodes.

(b) Normaliz-
ing TI

1

100 Thickness Index (TI)

M
es

h 
Th

ic
kn

es
s

0.2 0.4 0.8

(c) Curve for mapping
TI to mesh thickness.

(d) Final mesh
thickness.

Figure 5: Calculating the thickness of the coral structure.

(a) (b) (c)

(d) (e)

Figure 6: Different soft corals generated via open venation
(a, b) and closed venation (c, d) using a a 2D box for placing
auxins and using a 3D box (e).

Open Ended: specifies whether the open leaf venation al-
gorithm (if true) or the closed leaf venation is used.

Iterations: the number of iterations of vein growth. Unlike
the L-systems algorithm, the venation algorithm usu-
ally converges and after a certain number of iterations
the mesh does not appear visually different.

Auxins per iteration: how many new auxin sources are
generated on the leaf blade per iteration.

Initial width: the initial width of the leaf blade.

Width increment: the rate that the leaf blade grows out-
wards in width per iteration (note that marginal growth
was used to grow the leaf).

Auxin Kill Radius: an auxin is consumed when a vein
comes within the specified radius from this auxin.



(a) (b) (c) (d)

Figure 7: Sponge growth and mesh splitting process: a nu-
trient (white particle) approaches a vertex (a), which grows
upon collision as the nutrient is removed (b). As the length
of the red edge (c) is above the splitting threshold, it splits
(d) to create two more vertices.

Vein Radius: the vein’s growth rate in length per itera-
tion.

Mesh detail: the number of edges in a vein’s 3D cylinder.

2D: specifies whether the coral grows in a streamlined 2D
structure or in a 3D box.

Thickness: a parametric curve specifying how the cylin-
der’s mesh thickness changes from the root of the struc-
ture to the extreme leafs of the structure (see Fig. 5).

Shape: two bezier curves specifying the edges of the leaf (a
2D representation of the curved 3D resulting mesh).

Figure 6 shows some different structures which can be
created with the soft coral generation algorithm.

3.3 Sponges
Coralize generates sponges through a process inspired by

the accretive growth model of [9], but without using a model
of fluid dynamics in order to reduce computational over-
heads. The simplified generative process used in Coralize
starts from a hemispherical mesh, where each vertex repre-
sents a polyp waiting to be fed. The hemisphere is bounded
by a cube, and on every iteration a number of particles (or
nutrients), of radius r, are spread randomly along the top
surface of this cube. On every iteration, the particles move
downwards; when a vertex of the hemisphere collides with a
particle (using sphere collision), a nutrient is presumed to be
consumed. When this happens, the colliding vertex grows
outwards (based on its normal) by a fraction of its edge
length to other vertices; neighboring vertices also grow out-
wards slightly. Neighbors’ growth is controlled by a normal
function of the distance, so the further away from the collid-
ing vertex, the less the neighboring vertex grows outwards.
Figure 8 illustrates the growth process as the iterations in-
crease. As in [9] the mesh is optimized after each vertex
growth. Once a vertex grows, the system checks whether its
edges exceed a split threshold; if they do, the edge splits in
half, creating another vertex (see Fig. 7). If two edges are
smaller than a collapse threshold, they collapse into one by
removing a vertex.

Coralize allows a user to customize the generative process
of sponges by adjusting the following parameters:

Iterations: the number of iterations of sponge growth.

Feeding iterations: the number of neighboring points which
grow along the vertex colliding with a nutrient.

1 iteration 4 iterations 10 iterations 25 iterations

Figure 8: Sponge growth as iterations increase.

(a) (b) (c)

(d) (e)

Figure 9: Different sponges generated in Coralize.

Splitting threshold: the edge threshold length, above which
it splits in two.

Collapse threshold: the length of two adjacent edges, be-
low which they collapse into one.

Nutrients per iteration: the number of particles gener-
ated at the cube’s top edge per iteration.

Nutrient radius: the radius of each particle (particles are
spheres).

Particle feed: the upper limit of points (of the sponge mesh)
that the nutrient can collide with before it dies.

Nutrient lifetime: the number of iterations a nutrient can
survive.

Mesh detail: the initial hemisphere’s number of vertices.

Figure 9 shows some different sponges which can be cre-
ated with the sponge growth algorithm.

4. POPULATING THE REEF
The generative algorithms of Coralize can be used to pop-

ulate a reef, allowing a level designer to create an underwa-
ter environment. The user can generate corals and sponges,
adjusting the algorithms’ parameters as described in Sec-
tion 3 and assign materials to them, thus adding color to
the meshes. Coralize is accompanied by several textures ap-
propriate for marine sessile organisms; users can also create
custom materials using the Unity3D material editor. The
generated 3D assets are added to a coral pool accompanied
by the parameter set used to generate them and any mate-
rials selected.



Figure 10: Interface for adding corals and sponges to a
seabed mesh using a brush (left); the coral pool is shown
on the right.

4.1 Brush Functionality
The user interface of Coralize offers a brush functionality

(inspired by the Unity prefab brush2), which enables the
user to create copies of the 3D meshes over a specified unity
terrain (or any other unity game object) simply by dragging
the mouse over it (see Fig. 10). Dragging the mouse over a
designated mesh which acts as the seabed causes randomly
chosen corals or sponges from the user’s coral pool to be
placed at random points within the brush’s radius. The
brush adjusts the height and orientation of the new assets,
so that they follow the topology of the terrain. The user can
control the distribution and variation of the added organisms
by customizing the following brush parameters:

Brush Size: the area around the brush populated with corals.

Brush Density: how many corals are instantiated on each
drag/click event.

Coral Random Bias: a percentage specified per coral, in-
dicating the likelihood of a particular coral being se-
lected from the random pool.

Coral Orientation and Rotation: orientation can be
forced not to follow the terrain’s topology, and any
axis can be set to rotate randomly.

Coral Size: a range which will be used to randomly scale
a coral.

The standard brush of Coralize instantiates the same ma-
terials and meshes found in the coral pool, although it can
rotate or scale them at random to provide the semblance of
variation. The repetition of the same meshes in the coral
pool allows for more designer control over the appearance
of the corals and sponges and is faster to design with (less
latency as no new organisms are generated) and when ren-
dering (as one mesh detail needs to be stored).

In order to provide more variation in the seabed envi-
ronments, the automatic brush allows for new meshes to be
generated and placed on the seabed. Similar to the standard
brush, upon dragging the brush over a mesh designated as
a seabed, corals and sponges from the coral pool are se-
lected; variants of these corals and sponges are generated,
using the same values of their generative parameters (e.g.

2https://www.assetstore.unity3d.com/en/content/21321

(a) Original (b) 1 iteration

(c) 5 iterations (d) 10 iterations

Figure 11: Iterations of reef growth, starting from two corals
in Fig. 11a. Reef growth results in “territories” of corals.

thickness, iterations, etc.) and applying the same material
as the original meshes. Since generating new meshes may
be computationally demanding, the brush initially places
placeholder cubes on the seabed, replacing the cubes with
the new meshes when their generation is complete. The au-
tomatic brush, while slower to work with due to the waiting
time for new meshes to be generated, creates more inter-
esting and diverse scenes; the designer’s control over the
scene’s appearance is still retained to a large degree, since
newly generated meshes still use the same parameters and
materials specified by the user.

4.2 Growing the Reef
Beyond designating the areas populated by corals and

sponges, Coralize allows for more realistic placement of these
organisms which simulates reef growth. Competition for
space among marine sessile organisms is a common occur-
rence that we find in coral reef ecosystems [3]. Reef growth is
modeled in Coralize using a simple algorithm which spreads
an initial set of marine organisms along the sea bed. Once
a set of corals or sponges has been placed (e.g. using the
automatic brush), the user can choose to grow the reef: ev-
ery time the growth command is issued, for each organism
the neighboring positions along the four cardinal directions
are checked. For each neighboring position which does not
have another organism nearby, another instance of the same
organism (generated using the same parameters and mate-
rials as per the automatic brush) is placed on the seabed.
Figure 11 illustrates how corals expand as growth iterations
increase. This algorithm also takes into consideration the
depth (derived after the user specifies the sea plane), and
only grows corals in depths between 50cm to 20m below
sea level. In future versions of Coralize this depth will be
specified per coral type.

4.3 Using Water Currents
Coralize also allows the placement of water currents, which

the level designer specifies as arrows on the scene, along with
the current’s strength and nutrition range. Since real-life
sponges and corals rely on nutrients to be delivered through
water streams, marine organisms exposed to a water current
tend to have a denser and stronger structure than those in
sheltered areas [9]. Coralize currently affects the generated
corals’ thickness parameter, based on their proximity to the
water current; future work can explore more ways of visu-



current direction

g

r

Figure 12: The water current model, with a hemisphere of
radius equal to the current’s strength deciding which corals
are affected. The red coral is closer (based on r) to the cur-
rent’s ray than the nutrition range and is fully exposed; the
green coral is not within nutrition range and is therefore ex-
posed less (by a factor inversely proportional to its distance
from the current’s ray, i.e. g); the blue coral is outside the
hemisphere and is not exposed at all.

alizing a denser structure in both corals and sponges. Each
coral traces a ray to the source of the water current; in case
there is a collision with the seabed then the coral is in a
sheltered area and thus not exposed to the current. The
current considers non-sheltered corals within a hemisphere,
the radius of which is equal to the current’s strength. Calcu-
lating exposure to water currents is illustrated in Figure 12.
In short, corals within the current’s nutrition range (with
distance calculated from the water current’s ray) are fully
exposed to the current. Corals not within the current’s nu-
trition range (but within the hemisphere) are exposed less;
the further away such a coral is from the current’s ray, the
less it is exposed. Corals outside of the hemisphere, or in
sheltered areas, are not exposed. The more exposed a newly
added coral is to a water current, the higher its thickness
parameter in the generative algorithm (see Fig. 13). Since
previously placed corals are not regenerated, this necessi-
tates that the level designer places water currents before
using the brushes to add corals. If a coral is exposed to
multiple currents, the growth effect is aggregated resulting
in even thicker corals.

5. DISCUSSION & FUTURE WORK
Coralize incorporates a number of generative algorithms

for generating several types of marine sessile organisms ap-
propriate for populating a biologically realistic underwater
scene in a game or virtual world. The processes are highly
parameterizable by the user, allowing for a broad expres-
sive range in the visual appearance of results as evidenced
by Fig. 3, 6 and 9. Using popular constructive PCG meth-
ods such as L-systems and biological simulations such as
leaf venation and sponge growth, Coralize allows for the
quick generation of 3D meshes for hard corals, soft corals
and sponges by simplifying and streamlining the algorithms

Figure 13: Corals along the water current (right) are thicker
than those further away (left). The cubes shown here are
placeholder elements from the automatic brush, and are re-
placed with corals once those are generated.

(with a controlled loss of biological and visual accuracy).
Coralize also provides a graphic user interface in Unity3D

for adding the premade or newly generated marine sessile
organisms into a 3D scene. Additional features such as reef
growth and water currents create a more realistic, if less con-
trollable, reef appearance, while traditional brushes (includ-
ing an automatic brush which creates new meshes for each
instance) allow for more designer control over the placement
of corals and sponges.

During the development of Coralize and the implementa-
tion of its generative algorithms, it was soon obvious that
one cannot possibly model all the structures of organisms
using one PCG technique. Despite the different techniques
used currently in Coralize, there are many more types of
corals and marine sessile organisms which cannot be gener-
ated by e.g. adding another L-systems grammar. Although
one can find lots of similarities in marine sessile structures,
each family of organisms needs to be studied individually
in order to design and implement a technique for model-
ing its processes and generating its structure algorithmically.
For instance, hard corals such as Diploria labyrinthiformis
(see Fig. 1) can arguably not be modeled via L-systems due
to their compact nature. Future work in Coralize will at-
tempt to refine existing generative techniques and explore
new methods to create more varied types of marine sessile
organisms found in nature.

Future work on Coralize includes improvements of the ex-
isting generative techniques on many levels. To start with,
several optimization methods can be applied to the gener-
ative algorithms to speed up mesh generation and reduce
the number of vertices which need to be rendered in the fi-
nal underwater scene. In particular, Delaunay triangulation
and Voronoi diagrams can be used, as suggested by [14], to
dramatically increase the speed of leaf venation algorithms.
The sponge generation algorithm can be enhanced through
the use of octrees for collision detection with nutrients, in-
stead of iterating through all the vertices of the mesh; this
would make collision detection possible in logarithmic time
and increase the speed of generating sponges. While the L-
system algorithm is very fast when generating stony corals,
the appearance of the generated mesh could be greatly im-
proved by applying a smoothing algorithm in the branch
intersections. An inspiration comes from SpeedTree which



uses a welding method to modify the geometry of a branch
mesh to intersect seamlessly with another branch.

Another area of improvement is the materials of the gener-
ated meshes. Currently Coralize uses materials only for the
purpose of coloration; however, materials could be exploited
to generate more realistic corals. Bump maps can also be
used to create the bumpy effect which is usually found in
most corals. Moreover, certain corals (e.g. the Diploria
labyrinthiformis brain coral) could be modeled simply by
placing a bump map with the coral’s pattern over a smooth
hemisphere. The potential of using similar algorithms to
those presented in this paper to generate the textures of
such materials will be explored in future work.

Finally, the reef creation methods can be enhanced by
modifying the seabed mesh based on the amount of Sclerac-
tinia (reef building) corals that are present; this is already
explored in the literature [1]. A more precise water current
model can also be implemented using fluid dynamics, en-
suring that sheltered corals may still exhibit some growth
depending on the topology of the seabed mesh. The compu-
tational overhead of such algorithms is considerable, but it
may be alleviated somewhat via a pre-rendering step which
calculates water movement in a particular area of the reef.

6. CONCLUSION
This paper introduced Coralize, a tool which generates 3D

meshes of realistic marine sessile organisms. The parameter-
izable generative algorithms integrated in the tool allow for
a diverse set of stony and soft corals and sponges to be gen-
erated and placed on a scene. The constructive algorithms
used (L-systems, leaf venation and sponge growth) produce
new high-detail meshes quickly and in a controllable manner.
This allows a level designer to populate underwater scenes
with unique, visually appealing objects without needing to
buy, hand-craft or re-use 3D assets.

7. ACKNOWLEDGEMENTS
The research was supported, in part, by the FP7 ICT

projects C2Learn (project no: 318480) and ILearnRW
(project no: 318803), and by the FP7 Marie Curie CIG
project AutoGameDesign (project no: 630665).

8. REFERENCES
[1] H. Bosscher and W. Schlager. Computer simulation of

reef growth. Sedimentology, 39(3):503–512, 1992.

[2] L. Cardamone, G. N. Yannakakis, J. Togelius, and
P. L. Lanzi. Evolving interesting maps for a first
person shooter. In EvoApplications (1), pages 63–72,
2011.

[3] N. E. Chadwick and K. M. Morrow. Competition
among sessile organisms on coral reefs. In Coral Reefs:
an ecosystem in transition, pages 347–371. Springer,
2011.

[4] S. Chen, Z. Wang, X. Shan, and G. D. Doolen. Lattice
Boltzmann computational fluid dynamics in three
dimensions. Journal of Statistical Physics,
68(3-4):379–400, 1992.

[5] I. M. Dart, G. De Rossi, and J. Togelius. Speedrock:
procedural rocks through grammars and evolution. In
Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games. ACM, 2011.

[6] D. S. Ebert, F. K. Musgrave, and D. Peachey.
Texturing & Modeling: A Procedural Approach.
Morgan Kaufmann, 2002. 3rd Edition.

[7] D. Hopley. Encyclopedia of Modern Coral Reefs:
Structure, Form and Process. Springer, 2011.

[8] L. Johnson, G. N. Yannakakis, and J. Togelius.
Cellular automata for real-time generation of infinite
cave levels. In Proceedings of the Workshop on
Procedural Content Generation in Games. ACM, 2010.

[9] J. A. Kaandorp and J. E. Kübler. The algorithmic
beauty of seaweeds, sponges and corals. Springer, 2001.

[10] A. Liapis, C. Holmg̊ard, G. N. Yannakakis, and
J. Togelius. Procedural personas as critics for dungeon
generation. In Proceedings of Applications of
Evolutionary Computation, 2015.

[11] A. Liapis, G. N. Yannakakis, and J. Togelius.
Adapting models of visual aesthetics for personalized
content creation. IEEE Transactions on
Computational Intelligence and AI in Games,
4(3):213–228, 2012.

[12] M. Meister. Interactive Visualization in
Interdisciplinary Applications. PhD thesis, University
of Erlangen-Nuremberg, 2008.

[13] A. Rogers. The biology, ecology and vulnerability of
deep-water coral reefs. International Union for
Conservation of Nature, 2004.

[14] A. Runions, M. Fuhrer, B. Lane, P. Federl, A.-G.
Rolland-Lagan, and P. Prusinkiewicz. Modeling and
visualization of leaf venation patterns. In ACM
Transactions on Graphics, volume 24, pages 702–711.
ACM, 2005.

[15] T. Sachs. The control of the patterned differentiation
of vascular tissues. Advances in botanical research,
9:151–262, 1981.

[16] J. Togelius, N. Shaker, and J. Dormans. Grammars
and L-systems with applications to vegetation and
levels. In Procedural Content Generation in Games: A
Textbook and an Overview of Current Research. 2015.

[17] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne. Search-based procedural content
generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in
Games, 3(3):172–186, 2011.

[18] G. T. Toussaint. The relative neighbourhood graph of
a finite planar set. Pattern recognition, 12(4):261–268,
1980.

[19] G. N. Yannakakis, A. Liapis, and C. Alexopoulos.
Mixed-initiative cocreativity. In Proceedings of the 9th
Conference on the Foundations of Digital Games,
2014.


