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ABSTRACT
Divergent search techniques applied to evolutionary computation,
such as novelty search and surprise search, have demonstrated
their e�cacy in highly deceptive problems compared to tradi-
tional objective-based �tness evolutionary processes. While nov-
elty search rewards unseen solutions, surprise search rewards un-
expected solutions. As a result these two algorithms perform a
di�erent form of search since an expected solution can be novel
while an already seen solution can be surprising. As novelty and
surprise search have already shown much promise individually,
the hypothesis is that an evolutionary process that rewards both
novel and surprising solutions will be able to handle deception in
a be�er fashion and lead to more successful solutions faster. In
this paper we introduce an algorithm that realises both novelty
and surprise search and we compare it against the two algorithms
that compose it in a number of robot navigation tasks. �e key
�ndings of this paper suggest that coupling novelty and surprise is
advantageous compared to each search approach on its own. �e
introduced algorithm breaks new ground in divergent search as it
outperforms both novelty and surprise in terms of e�ciency and
robustness, and it explores the behavioural space more extensively.
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1 INTRODUCTION
One of the most critical aspects of optimisation is the design of the
objective function — or in the context of evolutionary computation
(EC) the �tness function [10]. �e �tness function determines how
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the evolutionary algorithm will explore the search space by assess-
ing the goodness of the evolved solutions. �e widely accepted
approach is to design a �tness function that explicitly rewards solu-
tions in terms of their goodness towards the objective of the search.
Recent �ndings, however, in the area of divergent evolutionary
search [15, 17, 20, 24] suggest that rewarding intrinsic properties of
the search can overcome deception [10, 29] which is widely consid-
ered a direct measure of problem hardness and a major challenge
within EC. �e deception of a problem is directly linked to the �t-
ness landscape: the challenge is to design a �tness function capable
of guiding search away from local optima, which can, in turn, make
the search hard for an objective-based �tness function. Further,
an ill-posed �tness function can be detrimental for the search as
rewarding local optima drives the search away from the global
solution. To overcome such challenges divergent search — instead
of an explicit objective — rewards the degree of an individual’s
divergence such as the degree of novelty [17] or surprise [15].

Novelty and surprise have been used as core notions in evolu-
tionary divergent search; both strategies have proven to be more
successful than objective search in highly deceptive tasks such as in
robot maze navigation [15, 17] and in robot locomotion [18]. Nov-
elty search (NS) is built on the principle of open-ended evolution
within arti�cial life [3] which does not consider explicit objectives:
instead, the dominant model is open-ended search [1, 31]. Similarly
surprise search (SS) is built on the divergent search paradigm and
draws from literature in cognitive science and computational cre-
ativity suggesting that not only humans are capable of self-surprise
but, most importantly, that surprise is a core internal driver of cre-
ativity and its �nal outcomes [12]. It has been empirically found
that a human-centric cognitive process as such can help computers
solve di�cult problems [15, 32]. Deceptive problems are in par-
ticular need of such divergent search processes — as shown from
earlier studies [15, 17, 20, 24].

Both novelty and surprise search are algorithms for divergent
search which ignore the problem’s objectives. However, each algo-
rithm rewards solutions di�erently: NS rewards solutions which
exhibit dissimilar behaviour from those in the current and in previ-
ous populations, while SS rewards solutions which diverge from
expected behaviours based on past trends. �ese rewards are or-
thogonal, since a solution can be novel without being surprising
(i.e. this divergence from past solutions is expected), and vice versa
if a solution breaks expectations by revisiting explored areas of
the search space (i.e. the solution is not novel). Our hypothesis in
this paper is that by rewarding both novel and surprising solutions
to di�erent degrees, a new type of more sophisticated search can
emerge. We argue that by coupling the search for unseen (NS) with
the search for unexpected (SS) solutions we will end up with an
algorithm that explores unseen points in the search space and at
the same time also rewards deviations from predicted search trends.
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Combining the two concepts (novelty and surprise) into a single
reward mechanism will provide a more nuanced evaluation of di-
vergence and can thus lead evolution to be�er handle deceptive
problems.

To test our hypothesis, we introduce a simple evolutionary al-
gorithm we name novelty-surprise search (NSS) that sums and
rewards both the degrees of novelty and surprise of an evolved
solution. �ere are several ways of combining novelty and surprise
as concepts, including multi-objective approaches [7], alternating
between the two rewards, or merging their deviation formulas. As
the �rst a�empt at a combined novelty-surprise search algorithm,
this paper uses the simplest alternative of aggregating the novelty
score and the surprise score into a single reward. Given that the
two concepts are in theory orthogonal, we assume this aggregated
approach should be su�ciently e�cient. Future work can use the
results of NSS as a baseline to test improvements of this simple, yet
fast and straightforward method.

In order to evaluate our hypothesis for NSS, we adopt the method-
ology and the testbed proposed in [17] and used in [15] to evolve
robot controllers via neuroevolution of augmenting topologies
(NEAT) [27] for three maze navigation tasks. We compare the
performance of NSS against novelty search and surprise search
via two performance measures: e�ciency (i.e. maximum �tness
obtained) and robustness (i.e. the number of times a problem is
solved). Our results show that coupling surprise and novelty im-
proves algorithm performance more than its constituent parts, and
proves advantageous with regards to e�ciency and robustness.

2 BACKGROUND
�e concept of deception in the context of evolutionary computation
was introduced by Goldberg [9], as a way to describe instances
where highly-�t blocks, when recombined, can lead the search
away from the global optimum. Since then, the notion of deception
has been re�ned and expanded, and it is used to describe problems
that challenge the evolutionary search for a solution. Deception,
sampling error [23] and a rugged �tness landscape [16] are o�en
considered as responsible for EC-hardness; the �tness landscapes,
especially in the case of combinatorial optimisation problems, can
a�ect the optimisation process when performing neighbourhood
search [26]. �is search process assumes there is a high correlation
between the �tness of neighbouring points and that genes in the
chromosome are independent of each other. Genes’ independence
refers to the concept of epistasis [5], which is considered one of
the factors of EC-hardness. When too many genes are in�uenced
by other genes in the chromosome, the epistasis is high and the
algorithm searches for a unique optimal combination of those genes
without any improvement in terms of global �tness [5].

A deceptive landscape, therefore, actively draws away the search
from the global optimum and traps the algorithm in some local
optima. Several approaches have been proposed to counter this
behaviour, as surveyed in [20]. Speciation [27] and niching [30], for
example, have been proposed as diversity maintenance approaches
as they enforce local competition among similar solutions. Another
approach is coevolution, where the �tness is computed based on a
competition between individuals in the same population [2]. �is
should ideally lead to an arms race towards a be�er gradient for

search, but it runs the risk of obtaining only mediocre solutions,
as it can happen that either all competitors �nd a poor solution or
one competitor performs so well that the other competitors cannot
improve [8].

2.1 Novelty search
Novelty search [17] is a recent alternative to evolutionary search
that explicitly ignores the objective of the problem it a�empts
to solve. �is search method selects individuals based on how
diverse they are with respect to the solutions found so far. Novelty
search therefore a�empts to reward novel behaviours in the current
population and in past generations, by keeping a novelty archive
of past novel behaviours. Novelty search is neither a random nor
an exhaustive search, as it learns to explore uncharted areas of the
search space [28]. In the general formulation of novelty search,
each individual (i) is evaluated based on the distance (dn ) from the
n nearest neighbours in both the population and the archive:

n(i ) =
1
n

n∑
j=0

dn (i, j ), (1)

where j is the j-th nearest neighbour with respect to novelty dis-
tance dn and n(i ) is the novelty score for the individual i . Neigh-
bors are selected from the current population and from the novelty
archive.

Novelty search has demonstrated its e�ectiveness in several
domains such as maze navigation and robot control [17], generation
of images [19] and generation of game content [21, 22].

2.2 Surprise search
Surprise search [32] is an alternative approach to divergent search
which rewards unexpected rather than unseen solutions in the search
space. �is is accomplished via a model that predicts where search
will be in the next generation based on the behavioural history of
evolution. �e derived predictions of the model are used to reward
deviations from the expected [13, 32]. Surprise search a�empts to
mimic a self-surprise process [11] which explores the prediction
space instead of the actual behavioural space. It is important to
note that the prediction space can be di�erent from the behavioural
space. For instance, in the maze navigation problem a prediction
can be an unreachable position of the maze.

Surprise search is composed by two main phases: the predic-
tion model (Eq. 2) and the deviation formula (Eq. 3) phases. First
the algorithm predicts a number of future behaviours (p) based
on a selected number of past behaviours (as determined by the
history parameter h) and on the locality of behavioural information
(expressed by the k parameter) which are modelled throughm:

p =m(h,k ). (2)

Once the predicted behaviours are in place the algorithm rewards
the members of the current population based on the distance of the
n closest predicted behaviours of the current generation as follows:

s (i ) =
1
n

n∑
j=0

ds (i,pi, j ), (3)

where s (i ) is the surprise score of individual i that is computed as
the average distance (ds ) of i from its n closest predictions (pi, j ).



Coupling Novelty and Surprise for Evolutionary Divergence GECCO ’17, July 15-19, 2017, Berlin, Germany

(a) Novelty (b) Surprise

Figure 1: Graph model example: an agent is visiting a graph made of nodes connected in a �xed con�guration. Every step, an
agent follows a particular model to decide which node to visit next. In (a) the agent visit only unvisited nodes (to maximise
the novelty score), while in (b) the agent is trying to maximise the surprise reward, by deviating from the predictions made
with the prediction modelm.

More details about surprise search can be found in [15, 32]. Sur-
prise search was shown to outperform objective search in a de-
ceptive environment and to be more robust compared to novelty
search [15]. Further, a constrained version of surprise search has
been highly e�ective for game weapon generation tasks [14]. �e
generated weapons have guaranteed high quality — imposed by
weapon balance and weapon e�ectiveness constraints — and are
characterised by high diversity (achieved via the reward of surprise),
thereby, directly realising quality diversity [25].

3 COUPLING NOVELTY AND SURPRISE
Earlier work [15, 17] has shown that objectives tend to be counter-
productive when searching for the global solution in deceptive
problems as they tend to mislead the search and o�en penalize
potentially critical stepping stones of evolution. Divergent search
algorithms such as novelty or surprise search, on the other hard,
have shown promise in highly deceptive problems even though
recent �ndings have demonstrated that some deceptive problems
can be challenging even for divergent search [4].

�e di�erence between novelty and surprise can be exempli�ed
by considering an agent travelling a graph made of nodes connected
in a �xed con�guration, starting from the node labelled as 1. Every
step the agent has to decide which node to visit next, and based on
a certain model it will get a reward based on the decision made. �e
objective of the agent is to maximise the immediate reward of every
step, while the �nal objective is to visit as many di�erent nodes
as possible. We set up two di�erent models, where respectively
we reward the agent when it visits a novel node i (novelty from
Eq. (1)) or an unexpected node i (surprise from Eq. (3)). In the �rst
case, an agent would probably try to maximise novelty by looking
for novel discovery in every step it takes in the graph: this can
easily lead to a situation as in Fig. 1a. In this case, the sequence
of discoveries is 1→ 3→ 6→ 7: in this con�guration, the agent
has to decide to visit either node 4 or node 8, but as they are both
novel, the agent will get the same reward no ma�er what it decides.
�erefore, if it decides to visit node 4, the agent will never visit
nodes 2, 5 and 8, as backtracking (i.e. visiting already visited nodes)
is highly discouraged by the novelty reward. Instead, a surprise
approach would try to deviate from the pa�erns learned while

visiting the nodes of the graph. In this case, the surprise model has
higher chance to visit nodes not visited in the previous example, as
backtracking could be the result of a self-surprising behaviour. If we
take the same sequence as before (1→ 3→ 6→ 7→ 4), surprise
would encourage visiting already seen nodes (for example node 3); if
its prediction model has learned to expect a new node in every step,
visiting an already seen node is unexpected. �erefore, a surprising
approach might lead to visit nodes not explored by novelty, thanks
to backtracking. However, the drawback of this model is that a
surprising agent can easily get stuck visiting the same nodes in
a loop, as backtracking can cause a “circular behaviour” (e.g. it
will forever visit already visited points) as pointed out in Fig. 1b.
�erefore, by combining the properties of novelty and surprise
models, we can see that the agent would visit the graph in a more
extensive way, as a search process that maximises novelty would
push for novel discoveries, while a surprise reward would help
to backtrack to already visited positions, allowing the agent to
discover solutions not explored by novelty alone.

As mentioned in the introduction, the working hypothesis of the
paper is that we can equip computers with be�er search capacities
if we couple algorithms with dissimilar properties and ways of op-
erating in the search space. In this paper we combine two divergent
algorithms, novelty search and surprise search, and we assume
that their complementarity in search — searching for the unseen
and searching for the unexpected — can improve an algorithm’s
performance compared to merely searching for novel or surprising
solutions. As the concept of novelty is orthogonal to that of surprise
and surprise can be viewed as temporal novelty [32], combining
the two seems to be an approach with great potential. �e follow-
ing section introduces an EC algorithm that couples novelty and
surprise into novelty-surprise search (NSS).

3.1 Novelty-surprise search
In the �eld of evolutionary computation several approaches exist
for simultaneously optimising several objectives. While recent liter-
ature has proposed several multiobjective evolutionary algorithms
[6], the simplest solution is to linearly combine the objectives. In
this work we opt for the la�er approach, as adding novelty and
surprise is trivial and computationally preferred while it represents
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(a) Neural Network (b) Sensors

Figure 2: Robot controller for maze navigation. Fig. 2a
shows the network’s inputs and outputs. Fig. 2b shows the
layout of the sensors: the six black arrows are range-�nder
sensors, and the four blue pie-slice sensors act as a compass
towards the goal.

an intermediate step towards a multiobjective implementation (dis-
cussed further in Section 6). �e novelty-surprise search (NSS)
algorithm executes both novelty and surprise search and at each
generation it rewards an individual by adding its novelty and sur-
prise score in the following fashion:

ns (i ) = λ · n(i ) + (1 − λ) · s (i ), (4)

wherens (i ) is the combined novelty and surprise score of individual
i and λ ∈ [0, 1] is a parameter that controls the relative importance
of novelty versus surprise.

4 MAZE NAVIGATION TESTBED
To be able to compare our �ndings with earlier work in novelty
and surprise search [15, 17] we test the NSS algorithm in the well-
studied maze navigation task. In this task a simulated mobile robot
has to �nd the goal in a maze in a limited number of simulation
steps. �e maze is designed by humans and the maze navigation is
made deceptive with the presence of several dead ends, which create
local optima in the search space. �e robot (Fig. 2b) is controlled by
an arti�cial neural network (Fig. 2a), with 10 inputs (6 range-�nder
sensors and 4 radar sensors) and 2 outputs (which control robot
movement): more details can be found in [17].

�ree mazes, identi�ed as medium, hard and very hard, are used
in this work. �e �rst two mazes were introduced in [17] and have
been studied in [15]; the very hard maze is a new maze designed by
the authors. �e medium maze has several dead ends in the search
space (Fig. 3a), but still a straightforward path towards the goal can
be found. �e hard maze (see Figure 3b) is more deceptive as the
path to the goal is more convoluted and goes through more distant
areas to the goal than where it starts at. �e very hard maze (Fig.
3c) is a modi�cation of the hard maze with more dead ends that
make the path to the goal even more complex.

�e evolved robot is considered successful if it manages to �nd
the goal within a radius of �ve units in 400 simulation steps for the
medium and hard maze, and 500 steps for the very hard maze; the
la�er modi�cation is due to the highly deceptive landscape encoun-
tered in the very hard maze, which led us to increase empirically

(a) Medium maze (b) Hard maze (c) Very Hard maze

Figure 3: �e robot navigation mazes that appear in [17] as
“medium’’ and “hard’’, and the new “very hard’’ maze. For
comparative purposes the samemazes are used for all exper-
iments in this paper. �e solid and empty circle represent
the robot’s starting position and the goal, respectively.

the number of steps in order to let at least one algorithm have a
reasonable number of successes.

4.1 Algorithm parameters
All three algorithms use NEAT to evolve a robot controller with
the same parameters as in [17]. �e population size is 250 and
evolution is carried out for 300 generations for the medium and
hard maze and for 1000 generations for the very hard maze. �e
NEAT algorithm uses both speciation and recombination, as in [27].

4.1.1 Novelty Search. Novelty search uses the same novelty
score and the same parameters used in [17]. While in [17] novelty
is calculated as the average distance from the 15 nearest neighbours,
the introduction of the new maze in this paper mandates that the n
parameter of novelty search is tested empirically. For that purpose
we vary n from 5 to 30 in increments of 5 across all mazes and
select the n values that yield the lowest average evaluations in 50
independent runs of 300 generations for the medium and hard maze,
and 1000 generations for the very hard maze. Based on the results,
we select n = 15 for all mazes, as it obtains the minimum number
of evaluations for each maze considered.

4.1.2 Surprise Search. Surprise search instead uses the surprise
score described in Equation (3); as in novelty search, the behaviour
of the robot is characterised by its �nal position in the maze. �e
surprise score is computed as the Euclidean distance between the
robot and the two closest predicted points (n = 2) in this paper,
whereas the prediction model is based on a one-step linear regres-
sion of two past generations (h = 2). Note that parameters n and h
are domain dependent and are not selected empirically in this paper
— they are instead selected based on the good performance achieved
by surprise search in earlier studies [15]. �e local behaviours used
in the prediction model are obtained through k-means clustering
in the behavioural space. In contrast to n and h the locality param-
eter k of Eq. (3) is selected empirically and based on a sensitivity
analysis. �e k value that yields the least evaluations, on average,
in 50 independent runs of the algorithm is selected for each maze.
As a result of this selection process k is 100, 50 and 200 in medium,
hard and very hard maze respectively.

4.1.3 Novelty-surprise search. NSS uses the novelty and surprise
scores described above and combines them linearly as in Eq. (4).
�e speci�c parameters of novelty search (n) and surprise search



Coupling Novelty and Surprise for Evolutionary Divergence GECCO ’17, July 15-19, 2017, Berlin, Germany

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
¸

0.1

0.2

0.3

0.4

0.5
N

o
rm

a
li

ze
d

 E
va

lu
a
ti

o
n

s Medium maze

Hard maze

Very Hard maze

Figure 4: Sensitivity analysis: selecting λ for NSS. �e �gure
depicts the average number of evaluations (normalized by
themaximumevaluations allocated) obtained out of 50 runs
(of 300 generations for the medium and hard maze, of 1000
generations for the very hard maze). Error bars represent
the 95% con�dence interval.

(n, h, k) remain unchanged. A core component of the proposed NSS
algorithm is the λ parameter which determines the impact of both
novelty and surprise in Eq. (4): higher λ values put more weight on
novelty. To select appropriate λ values we run 11 experiments for
each maze, each time with a di�erent λ value ranging from 0 to 1
in increments of 0.1. Each experiment is composed of 50 runs of
the NSS algorithm with the particular λ parameter.

Fig. 4 shows the average number of evaluations required to �nd
a solution across λ, for each maze. We pick λ values that solve
the corresponding maze in the fewest possible evaluations: in the
medium maze and hard maze, this happens for λ = 0.6 leading to
an average of 14.4·103 and 21·103 evaluations respectively. In the
very hard maze the fewest evaluations on average (57.7·103) are
found when λ = 0.3.

From this analysis we can argue that in more deceptive problems,
the advantage of combining novelty with surprise becomes more
visible. In the medium and hard maze, the novelty score is more
bene�cial, while the surprise score contributes 40% to the �nal value
for best results. Instead, in the very hard maze the surprise score
is more prominent for be�er performance, as its contribution to
the ns score through the λ parameter becomes higher. �is general
e�ect is obvious when comparing the performance of NSS against
the performance of the two baselines algorithms (λ = 0 and λ = 1).
A detailed comparison of NSS against novelty and surprise search
is presented in the next section.

5 EXPERIMENTS
�e maze navigation problem is used to compare the performance of
surprise search, novelty search and NSS. �e performance metrics
analysed are their e�ciency and robustness in all the three mazes
(medium, hard and very hard maze) as proposed in [15]. All results
are computed from 50 independent evolutionary runs, while the
reported signi�cance is obtained via two-tailed Mann-Whitney U-
tests at a 5% signi�cance level. It is important to note that the 50
evolutionary runs analysed here are additional to (and independent
of) the ones used for parameter tuning in Section 4.1.

Table 1: E�ciency. Maximum �tness over time on average
for each algorithm a�er a number of evaluations (E), for the
three mazes considered. Values in parentheses denote the
95% con�dence interval.

Maze E NS SS NSS

Medium
25·103 293.2 (1.9) 291.0 (3.3) 294.8 (2.8)
50·103 295.7 (0.6) 295.8 (0.3) 295.7 (0.2)
75·103 295.8 (0.5) 295.9 (0.2) 295.7 (0.2)

Hard
25·103 283.6 (4.4) 284.0 (4.7) 291.5 (3.2)
50·103 294.2 (1.5) 293.1 (2.8) 295.0 (1.6)
75·103 295.7 (0.4) 295.9 (0.2) 296.0 (0.2)

Very
hard

75·103 271.3 (3.5) 286.0 (5.1) 291.0 (3.3)
150·103 282.0 (4.3) 293.9 (2.6) 294.8 (1.7)
250·103 292.4 (2.8) 296.2 (0.2) 296.2 (0.2)

5.1 E�ciency
As in the analysis in [15, 17], e�ciency is de�ned as the maximum
�tness over time: based on [17], �tness is de�ned as 300 − d (i )
where d (i ) is the Euclidean distance between the �nal position of
robot i and the goal.

Table 1 shows the �tness of the three algorithms considered, for
each maze, where values are averaged across 50 runs of each algo-
rithm and the values in parentheses represent the 95% con�dence
interval of the average. In the medium maze, the e�ciency of the
three algorithms is really similar, even if on average NSS is slower
at the beginning and eventually becomes faster than novelty and
surprise search, especially between 10, 000 and 35, 000 evaluations.
At the end of 75,000 evaluations, the di�erences are not statistically
signi�cant (p > 0.05). In the hard maze, NSS outperforms both
NS and SS between 25, 000 and 50, 000 evaluations (see Table 1).
Again no statistical signi�cance can be established for �nal �tness
(p > 0.05). In the very hard maze, Table 1 shows that NSS outper-
forms SS in the �rst 150, 000 evaluations, and it outperforms NS for
the entire evolutionary process.

5.2 Robustness
In this section we compare the algorithms’ robustness de�ned as
the number of successes obtained by the algorithm across time (i.e.
evaluations). Fig. 5 shows the robustness of all three algorithms for
each maze, collected from 50 independent runs.

In the medium maze (Fig. 5a) NSS is able to �nd on average
more solutions than novelty search, and is also faster on average
(see Table 2). On the other hand, NSS outperforms SS only in the
interval between 15, 000 and 50, 000 evaluations.

In the more deceptive hard maze (Fig. 5b) the bene�t of combin-
ing novelty and surprise is more visible. NSS clearly outperforms
novelty search for the entire evolutionary process, and it outper-
forms surprise search between 7, 500 and 40, 000 evaluations. In
terms of average number of evaluations, NSS is signi�cantly faster
than novelty search and faster than surprise search (see Table 2).

In the last and most deceptive testbed, the very hard maze, NSS
is signi�cantly faster than NS and faster than SS. Fig. 5c shows
how combining novelty and surprise can improve substantially
the performance: from 20, 000 evaluations NS becomes slower in
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(a) Medium maze
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(b) Hard maze
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Figure 5: Robustness comparison: number of successes in solving the maze problems over the number of evaluations.

Table 2: Evaluations. Number of evaluations on average to solve the three mazes for each algorithm. Values in parentheses
denote the 95% con�dence interval.

Maze Novelty Search Surprise Search NSS
Medium 19.0·103 (4.1·103) 15.6·103 (3.5·103) 13.8·103 (2.3·103)

Hard 27.2·103 (5.2·103) 23.7·103 (4.1·103) 19.6·103 (3.3·103)
Very hard 110.4·103 (22.8·103) 68.6·103 (12.7·103) 56.7·103 (11.6·103)

comparison to NSS while SS also fall behind between 10, 000 and
35, 000 evaluations. As can be seen from Table 2, NSS needs fewer
evaluations to solve this maze, and is signi�cantly faster than NS
and faster than SS.

As a general conclusion from the robustness comparisons we
can clearly observe that coupling novelty and surprise yields bet-
ter performance both in terms of solutions found and in terms of
evaluations for discovering a solution, especially in the two harder
mazes where the bene�ts of NSS are more evident.

5.3 Further analysis
Additional insights on the performance of NSS can be gleaned
by analysing the output in the behavioural space as well as the
genotypic space. For the former, we observe the heatmaps of robot
positions in a number of typical runs for each algorithm in Section
5.3.1. For the la�er, we present a number of metrics computed from
the �nal ANNs evolved by the three algorithms in Section 5.3.2.

5.3.1 Behavioural Space: Typical Examples. Table 3 shows a
comparison between typical runs for novelty, surprise and NSS,
computed from experiments in the three mazes. Each entry de-
scribes the number of evaluations (E) taken by the algorithm to
�nd the solution and the heatmap shows the robots’ �nal positions
throughout all evaluations. Moreover their corresponding entropy
(H ) is shown as a measure of their spatial diversity. For each maze,
the runs shown are chosen so that the number of evaluations until a
solution is discovered are similar among the three algorithms. Not
surprisingly, the table shows that NSS is able to explore a larger
part of the maze, especially for the hard and very hard mazes: the
heatmaps show that NSS results in a more sparse distribution of
�nal robot positions. Furthermore, the entropy values show that,
in the hard and very hard maze, the diversity of �nal positions is

always higher for each typical run considered. Investigating other
runs with di�erent E values indicated that the di�erence in entropy
values increases when evolution takes longer to �nd a solution.
�erefore we can infer that combining novelty with surprise is
bene�cial also for exploring the behavioural space: while novelty
searches for unexplored points of the maze, surprise search pushes
for unexpected points of the maze, which can involve backtrack-
ing to already visited places; their combination augments their
respective search capacities.

5.3.2 Genotypic Space. Following the analysis presented in [15],
Table 4 shows the metrics collected from the �nal ANNs evolved by
the three algorithms, focusing on two main aspects: their complexity
and their diversity. Genomic complexity is de�ned as the number of
hidden nodes and as the number of connections in the �nal ANNs,
while genomic diversity is measured as the average pairwise dis-
tance of the �nal ANNs evolved. �is distance is computed with the
compatibility metric, a linear combination of disjoint genes, excess
genes and di�erence in weights, as described in [27]. In terms of
genomic complexity, we observe that NSS evolves ANNs larger
than novelty search but at the same time smaller than surprise
search; the same behaviour can be observed in terms of number of
connections. �is means that NSS is able to outperform surprise
search without creating as complex networks, which alleviates the
computational e�ort needed to evolve complex and large ANNs.
In terms of genomic compatibility, NSS does not yield the same
diversity as surprise search, but the ANNs are more diverse com-
pared to novelty search. �is is probably due to the average size
of networks generated by the NSS algorithm. �e size a�ects the
disjoint and excess metrics, as it is less probable to have very di-
verse networks when their size is smaller compared to the ones
generated by surprise search.
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Table 3: Behavioural Space. Typical successful runs solved
a�er a number of evaluations (E) on the three mazes exam-
ined. Heatmaps illustrate the aggregated numbers of �nal
robot positions across all evaluations. Note that white space
in themaze indicates that no robot visited that position. �e
entropy (H ∈ [0, 1]) of visited positions is also reported and
is calculated as follows: H = (1/loдC )∑i {(vi/V )loд(vi/V )};
where vi is the number of robot visits in a position i, V is
the total number of visits and C is the total number of dis-
cretized positions (cells) considered in the maze.

Medium Maze
Novelty Search Surprise Search NSS

E = 25000 E = 25000 E = 25000
H = 0.63 H = 0.60 H = 0.62

Hard Maze
Novelty Search Surprise Search NSS

E = 25000 E = 25000 E = 25000
H = 0.61 H = 0.62 H = 0.65

Very Hard Maze
Novelty Search Surprise Search NSS

E = 75000 E = 75000 E = 75000
H = 0.63 H = 0.69 H = 0.71

6 DISCUSSION
In this paper we have shown that by coupling novelty and surprise
search we can obtain an algorithm that is as e�cient as and more
robust than novelty search or surprise search alone in the maze
navigation domain. Combining two di�erent yet powerful ways of
divergent search ends up being bene�cial with respect to search; the
NSS algorithm searches for novel solutions, which means exploring
not yet seen points in the search space, and at the same time also
rewards surprising solutions, which means deviating from predicted
behavioural trends. In fact, when novelty search �nds a highly

novel solution, this will likely be still considered novel for several
generations until it gains su�cient neighbours. On the other hand,
surprise search will consider a solution surprising only in the �rst
generation it appears, as the prediction model will change in the
following generations; this has the drawback that a really good
solution in terms of global �tness can be eliminated by surprise
search because it is not surprising anymore. By aggregating the
novelty and surprise scores in NSS, we eliminate both of these
drawbacks: novelty is able to “maintain” surprising solutions from
evolutionary rejection (if they also have a high novelty score) and, at
the same time, very novel solutions have less impact on the selection
mechanism as their surprise score degrades throughout evolution.
As seen in the behaviour analysis of the testbed navigation task,
the coupling is bene�cial for search as it pushes robot controllers
to spread out and explore the behavioural space more extensively.

While these results already demonstrate the advantages of NSS
as a combined form of divergent search, more work needs to be per-
formed to explore the full potential of this coupling. As NSS couples
novelty and surprise linearly, it cannot exploit various combinations
of novelty and surprise in a dynamic fashion. �is static behaviour
of NSS limits the capabilities of the algorithm. A direct solution to
this limitation is a multiobjective implementation of NSS. Future
work will investigate whether using a multiobjective evolutionary
algorithm such as NSGA-II [7] can lead to be�er performance in
terms of e�ciency and robustness. Moreover future work will ex-
plore how NSS can be applied in non-NEAT representations (for
example for game weapon generation [14]) and how behaviour
characterization can a�ect the performance of the algorithm.

7 CONCLUSIONS
�is paper has introduced the novelty-surprise search algorithm
which couples novelty and surprise search and tested its perfor-
mance in the maze navigation domain. �e results show that com-
bining novelty and surprise can be advantageous in terms of e�-
ciency, robustness and behavioural diversity. Furthermore, evolving
individuals via NSS exhibits a greater exploratory capacity. Evi-
dently, combining novelty and surprise search allows search to elim-
inate, in part, limitations inherent in novelty search and surprise
search, as it outperforms the performance of the two algorithms
when tested on their own.
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