
Data Adventures

Gabriella A. B. Barros
Center for Computer

Games Research
IT University of Copenhagen

Copenhagen, Denmark
gbar@itu.dk

Antonios Liapis
Institute of Digital Games

University of Malta
Msida, Malta

antonios.liapis@um.edu.mt

Julian Togelius
Department of Computer
Science and Engineering

New York University
New York, USA

julian@togelius.com

ABSTRACT
This paper outlines a system for generating adventure games
based on open data, and describes a sketch of the system im-
plementation at its current state. The adventure game genre
has been popular for a long time and differs significantly in
design priorities from game genres which are commonly ad-
dressed in PCG research. In order to create believable and
engaging content, we use data from DBpedia to generate
the game’s non-playable characters locations and plot, and
OpenStreetMaps to create the game’s levels.

1. INTRODUCTION
Much work in procedural content generation (PCG) is cur-

rently focused on generating content such as levels, maps
and items for mechanics-heavy games, such as action games
and puzzle games. Similarly, attempts to generate complete
games have focused on simple arcade games or board games,
with nothing in the way of story [12].

In a sense, most of PCG and game generation focuses
on “silent” content, reflecting a formalist mechanics-first ap-
proach to games. At the same time, research in interactive
narrative focuses on generating stories first, where gameplay
is contingent on the stories. In this paper, we seek inspi-
ration in an existing and successful narrative-heavy game
genre, with strong genre conventions, and propose generat-
ing complete games in this genre following the structural
constraints given by these genre conventions.

We look at the genre of adventure games, as exempli-
fied by games such as Maniac Mansion (Lucasfilm Games
1987), Day of the Tentacle (Lucas Arts 1993) and in partic-
ular Where in the world is Carmen Sandiego? (Brøderbund
Software 1985), as a challenging novel domain for game gen-
eration methods. This poses new challenges for content gen-
eration and game generation. In particular, the generated
game needs to be meaningful in terms of its textual descrip-
tion as well as in terms of game mechanics. To take Carmen
Sandiego as an example, the game content to a large extent
consists of descriptions of existing cities and places within

cities. Simply generating random names and descriptions is
likely to lead to an underwhelming experience.

In order to generate such content, we turn to the practice
of data games, i.e. generating game content based on open
data [6]. The basic idea is that the real world already con-
tains almost everything we need to know in order to (auto-
matically) create adventure games; design is mostly a matter
of selecting and ordering data so as to fit with genre conven-
tions, and perhaps add a few extraneous elements. Hence, in
order to generate an adventure game, we make use of open
data to provide both the structure and the associations be-
tween game elements. Networks of information, as found
in Wikipedia, can provide with the necessary links between
dissimilar objects (people, locations, objects, topics). Such
links can be used to create a rudimentary plot, which the
player needs to discover. Adding more depth to these dis-
covered links, images and maps from online databases can
be used to enhance both gameplay and aesthetic appeal of
the game. The first steps to implementing such a game are
described in this paper.

1.1 Game generation and content generation
Procedural generation of game content is a common fea-

ture in several game genres and an active research field [10].
Content generation can be more or less ambitious in scope;
the proposed project seeks to generate essentially the whole
adventure game, while simply keeping some core mechanics
fixed. Many different efforts have been made to generate
complete games, using methods that are solver-based, con-
structive or search-based [12].

Search-based game generation uses optimization algo-
rithms (e.g. evolutionary computation) to search a space for
feasible games. Ludi generates board games through evolu-
tionary computation, evaluating the games via a weighted
sum of many heuristics [2]. A number of attempts have been
made to generate similar simple mechanics-focused games [13,
4, 9]. It has even been argued that this type of games
— single-player, short mechanics-heavy games with easily
quantifiable properties — are ideal for generation as they
can be evaluated easily through simulated playthroughs [12].

Instead, the proposed project aims to generate games
which cannot easily be evaluated based on whether an al-
gorithm playing them wins or loses: losing the game is not
possible or not of much consequence. Instead, the game is
focused on progression through exploration. We assume a
very limited basic vocabulary of mechanics, with most of the
options for action being implicitly defined by the content.
This opens up a set of new challenges for game and content
generation, most importantly what to base the content on



so that it becomes meaningful and interesting to play with.

1.2 Data games
The term “data games” describes games which use real-

world open data to generate in-game content. In such games,
data can be explored during gameplay, which allows the
emergence of several ways to learn and visualize informa-
tion [6, ?]. In most cases, data from the real world must be
transformed in order to be useful as game content. Trans-
formation typically involves both structural transformation,
where data format is changed to work with the game, and
data selection, where parts or aspects of a dataset that is
useful for generating game content are selected.

Examples of data games include Bar Chart Ball [11], where
the player moves a ball atop a bar chart by choosing differ-
ent demographic indicators which change the appearance of
the chart. Other projects include Open Data Monopoly,
which uses real-world demographic information to create
a Monopoly (Parker Brothers 1935) board game [5], and
Open Trumps, which evolves sets of cards for Top Trumps
(Dubreq 1977) based on countries’ data [3]. Similarly, data
from OpenStreetMaps and resource maps have been used to
create balanced Civilization (MicroProse 1991) maps [1].

1.3 Adventure games
Adventure games were extremely popular during the 1990s,

with classic games such as The Secret of Monkey Island (Lu-
casArts 1990) or Day of the Tentacle. Such games were
hailed for their witty humor, their amusing dialogue and
difficult puzzles. Despite a decrease in commercial interest
during the 2000s, adventure games have resurfaced both as
commercially viable products and as popular entertainment
outlets. Contemporary adventure games such as Tales of
Monkey Island (Telltale Games 2009) or Broken Age (Dou-
ble Fine 2014) use episodic releases of the adventure’s story,
thus retaining player interest for longer periods of time.

While modern adventure games may be visually very dif-
ferent than their counterparts in the 1990s, certain common
patterns of play and design connect all adventure games to-
gether. Adventure games often revolve around solving a
mystery or overcoming a challenge through cunning and un-
expected associations between pieces of information or un-
likely objects. The core challenge is the discovery of such
associations, which may require that players perform spe-
cific sequences of actions, combine objects in their inventory
to create new objects, or pay close attention to the hints pro-
vided in dialogue with non-player characters (NPCs). Chal-
lenges in most adventure games are local: a player must
solve a puzzle in order for the story to move forward and
the next puzzle be presented. Some adventure games can
include losing conditions, where a player needs to load or
restart from a previous game state, although more often
players can always revisit all previous states of the game
and search for missing clues. Due to the carefully written
end-game and plot progression, most adventure games are
played once and have little replay value.

In this project, we are particularly inspired by Where in
the world is Carmen Sandiego?, a series of popular educa-
tional adventure games by Brøderbund Software. The first
game in the series was released in 1985. In this game, the
player has to find the eponymous Carmen Sandiego by trav-
eling around the world and collecting clues as to Sandiego’s
appearance and whereabouts. The destinations visited are

real institutions and monuments in real cities, though (most)
NPCs in the game are fictional. The use of real world places
and phenomena suggests that the basic game structure could
form the basis for a type of data game.

2. PROPOSED GAME DESIGN
Traditionally, creating an adventure game is a laborious

process where clever dialogue and interesting storylines are
carefully authored by one or more writers. Adventures are
often driven by their story; therefore, plot, NPCs and dia-
logues are carefully tuned to provide a rich user experience.
In contrast, using open data to drive the system of an ad-
venture game, we come across the challenge of designing a
game that needs to interpret and understand raw input, and
can work in less controlled (or controllable) instances than
traditional adventure games.

With this in mind, our goal is to create an adventure game
focused mainly on discovery of visual and verbal clues and
pieces of NPC dialogue. Fundamentally, the player’s goal
is to find the location of a certain person, starting from
the location of another person or clue. To do so, players
can travel between different countries and cities, and explore
buildings in each city. Entering buildings within a city, the
player can interact with NPCs and objects found there in
order to get clues which can unlock new locations, NPCs
or dialogue options. Some objects or NPCs might give false
clues, and NPCs can give no clues at all. A clue can either be
a line of dialogue or an object with some piece of information
(e.g. a letter portraying a NPC that the player needs to talk
to).

Similar to many adventure games, it is not possible to
lose the game, and there are no action sequences or other
timing-dependent mechanics. The game is won by finding
the target person. While there might be some animation
signaling e.g. player movement, most of the game interface
is based on structured text, menu choices and static images.

3. IMPLEMENTATION
The game is implemented in Java using libGDX1, a frame-

work for multi-platform game development. It currently uses
DBpedia and OpenStreetMaps. The former provides data
for generating the plot of the game, while the latter is used
to render maps. Currently, the main mechanics are talking
to NPCs and traveling from one location to another.

The game’s plot is defined via one of the possible relations
between two real people. With these people as arguments,
a path between them is traced using Wikipedia data gath-
ered from DBpedia, a community project aiming to extract
structured information from Wikipedia2. For instance, if
the initial person is Alan Turing and the target person is
Nikola Tesla, one of the possible paths is shown in Figure 1.
Algorithmically, the path is represented as a directed graph,
where each person, location, category, etc. is a node and
their relations are the edges.

Figure 1 could be read as: Alan Turing was influenced
by Ilya Prigogine, who also influenced Friedrich Har-
togs. Hartogs was a mathematician who committed
suicide, as did Ludwig Boltzmann. Boltzmann was a
fellow of the American Mathematical Society, as is

1http://libgdx.badlogicgames.com/
2http://dbpedia.org/



Figure 1: One of the possible paths between Alan Turing and Nikola Tesla, discovered via the DBpedia crawler.

origin 〈P〉 goal
origin 〈P1〉 object 〈P2〉 goal
origin 〈P1〉 object1 〈P2〉 object2 〈P3〉 goal

Figure 2: Possible relations discovered by the crawler.

queries ← all queries between(A,B);
paths ← search dbpedia(queries);
sort paths by diversity;
path ← best in paths;
initialize final path;
for i← 0 to path.size− 1 do

queries ← queries between(path[i],path[i+1]);
loc paths ← search dbpedia(queries)
sort loc paths by diversity
loc path ← best in loc paths
add loc path to final path;

end
return final path

Algorithm 1: Crawler pseudo-code (A: origin, B: goal).

Lloyd Shapley, who was inspired by John von Neu-
mann, a prodigy in many fields, like mathematics, language
and memorization. Both von Neumann and Nikola Tesla
were gifted, as Tesla had eidetic memory.

A crawler has been implemented to search for possible re-
lations between two given subjects: the origin and the goal.
It is heavily inspired by RelFinder [8], a visualization and
exploration tool for web-semantic data. Our search is done
by querying the DBpedia SPARQL endpoint. Several differ-
ent queries are generated between the two main subjects, in
order to find links connecting both of them. Figure 2 shows
possible relations as responses to the queries, where Pi is
the predicate that joins two subjects (e.g. “subject”, “reside
in” or “spouse”). Afterwards, one of the resulting paths is
chosen and a new search is made for each pair of relations
in this path. Algorithm 1 shows the pseudocode for this.

Selecting the best path is made according to the unique-
ness of the path. There are multiple ways to relate two
different subjects; for instance, two people may have both
lived in the Austrian Empire, but so did millions of others.
These two people may also have more specific things in com-
mon: a mutual acquaintance, an institution they both went
to or a similar field of research. These less obvious choices
are less general and can possibly create a more interesting
plot, and intuitively better clues for the player. To measure
this, we calculate the frequency of each predicate and node
in all possible paths. A path is considered ‘more’ unique
than another if its edges and nodes appear fewer times in

Figure 3: Screenshots from the game. Top: the map of
Manchester rendered with OpenStreetMaps. Buildings are
positioned at random locations. Bottom: A part of a dia-
logue with a random NPC.

the search. For example, suppose a search finds 50 paths,
where an edge tagged with “influenced by” appears 80 times
(it can appear multiple times in a single path), another with
“residence” shows up 20 times, and “work institutions” 15. If
path A consists of edges “influenced by” and “residence” and
path B contains edges “residence” and “work institutions”,
path B is ‘more’ unique than A, because its edges appeared
less in the search results. Path length is also taken in con-
sideration: longer paths result in more clues which need to
be discovered and longer gameplay in general. The total
number of edges and nodes in the path is added (with ap-
propriate weighting) to the path’s uniqueness score.

Each node found in the final path is expanded and trans-
formed into a NPC, a location or a clue. The current version
of the system does not contain objects, so all clues come in
the form of dialogue lines. NPCs and locations are generated
in a more straightforward manner than clues. People are in-
stantiated as NPCs, and their personal characteristics (e.g.



age, race, hair color, etc) are included in the object. Loca-
tions are created as either cities or buildings within them —
states are treated as cities to simplify the process.

Clues, on the other hand, are anything that can not be
transformed into a NPC or a location (e.g. categories). For
each clue, a small piece of text from its DBpedia resource
page is gathered and added as a dialogue line in the NPCs’
dialogue tree.

In the current state of the project, the game renders im-
ages in two manners. For NPCs and buildings, it uses a
handcrafted database of faces and buildings to provide vi-
sual information. It is not identifying real images from peo-
ple (e.g. it does not use a photo from Alan Turing for his
NPC), nor does it use a real image of the building itself.

Maps, however, are rendered using JMapViewer, a Java
Swing component that renders OpenStreetMap (OSM) maps
data3. OSM is a community-based world mapping project [7].
The image is exported as a texture and stored for in-game
use: an image of the world map is rendered and saved first,
then one zoomed map for each city in the game. The coordi-
nates of each city are acquired from DBpedia. Screenshots of
a city map and a dialogue in the game are shown in Figure 3.

4. OUTLOOK
In this paper, we propose the use of open data to gen-

erate content for an adventure game. We use data from
Wikipedia, obtained through DBpedia, to create the game’s
plot, NPCs and locations, and render the game’s maps us-
ing OpenStreetMaps. This project is very much a work in
progress. A next step is to obtain the images of people and
buildings automatically (see Figure 4), possibly via APIs
such as those provided by Google. Improving the plot gener-
ation is also imperative. At the moment, the story is linear,
but adventure games usually require some sort of branch-
ing. We can achieve this with false clues, with dead-end
links from DBpedia, with side-quests (e.g. with another tar-
get person) or with multiple paths towards the main plot’s
target person. We also intend to add objects to the game:
at first only readable objects (e.g. books, letters), and even-
tually also objects that can provide different interactions
with the environment (e.g. keys that unlock certain rooms,
flashlights that allow to search in a dark place), or puzzles.

Acknowledgment
Gabriella Barros acknowledges financial support from CAPES
and Science Without Borders program, BEX 1372713-3.

5. REFERENCES
[1] G. A. B. Barros and J. Togelius. Balanced civilization map

generation based on open data. In Proceedings of the 2015
IEEE Congress on Evolutionary Computation, 2015.

[2] C. Browne. Automatic generation and evaluation of
recombination games. PhD thesis, Queensland University of
Technology, 2008.

[3] A. B. Cardona, A. W. Hansen, J. Togelius, and M. G.
Friberger. Open trumps, a data game. In Proceedings of the
International Conference on the Foundations of Digital
Games, 2014.

[4] M. Cook and S. Colton. Multi-faceted evolution of simple
arcade games. In Proceedings of the IEEE Conference on
Computational Intelligence and Games, 2011.

3http://wiki.openstreetmap.org/wiki/JMapViewer

Figure 4: Finding data from different data sources to create
maps and characters in the game from a subpath of Fig. 1.

[5] M. G. Friberger and J. Togelius. Generating interesting
monopoly boards from open data. In Proceedings of the
IEEE Conference on Computational Intelligence and
Games, 2012.

[6] M. G. Friberger, J. Togelius, A. B. Cardona, M. Ermacora,
A. Mousten, M. Møller Jensen, V.-A. Tanase, and
U. Brøndsted. Data games. In Proceedings of the
International Conference on the Foundations of Digital
Games, 2013.

[7] M. Haklay and P. Weber. Openstreetmap: User-generated
street maps. Pervasive Computing, 7(4):12–18, 2008.

[8] P. Heim, S. Lohmann, and T. Stegemann. Interactive
relationship discovery via the semantic web. In Proceedings
of the 7th Extended Semantic Web Conference, volume
6088 of LNCS, pages 303–317. Springer, 2010.

[9] T. S. Nielsen, G. A. B. Barros, J. Togelius, and M. J.
Nelson. General video game evaluation using relative
algorithm performance profiles. In Applications of
Evolutionary Computation, pages 369–380. Springer, 2015.

[10] N. Shaker, J. Togelius, and M. J. Nelson. Procedural
Content Generation in Games: A Textbook and an
Overview of Current Research. Springer, 2015.

[11] J. Togelius and M. G. Friberger. Bar chart ball, a data
game. In Proceedings of the International Conference on
the Foundations of Digital Games, 2013.

[12] J. Togelius, M. J. Nelson, and A. Liapis. Characteristics of
generatable games. In Proceedings of the 5th Workshop on
Procedural Content Generation in Games, 2014.

[13] J. Togelius and J. Schmidhuber. An experiment in
automatic game design. In Proceedings of the Symposium
on Computational Intelligence and Games, pages 111–118.
IEEE, 2008.


