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Abstract—This paper explores how evolved game playing
agents can be used to represent a priori defined archetypical
ways of playing a test-bed game, as procedural personas. The
end goal of such procedural personas is substituting players
when authoring game content manually, procedurally, or both
(in a mixed-initiative setting). Building on previous work, we
compare the performance of newly evolved agents to agents
trained via Q-learning as well as a number of baseline agents.
Comparisons are performed on the grounds of game playing
ability, generalizability, and conformity among agents. Finally,
all agents’ decision making styles are matched to the decision
making styles of human players in order to investigate whether
the different methods can yield agents who mimic or differ
from human decision making in similar ways. The experiments
performed in this paper conclude that agents developed from
a priori defined objectives can express human decision making
styles and that they are more generalizable and versatile than
Q-learning and hand-crafted agents.

I. INTRODUCTION

Decision making is a central aspect of almost any interest-
ing agonistic [1] game, as noted by Sid Meier who famously
stated that “a game is a series of interesting choices” [2].
Typically, play sessions in agonistic games can be described
as chains of decisions by one or more players in a proactively
and reactively changing environment. Players make decisions
while the environment either observes, responds, or proceeds
agnostically, or enacts some combination of the three. Captur-
ing, describing, modeling, and reproducing chains of decisions
is of interest to game researchers, developers, and players for
several reasons.

One reason can be to characterize typical chains of deci-
sions as being representative of certain decision making styles
in playing particular games. They represent certain ways of
navigating the decision space of the game at a chosen level
of abstraction. The appropriate level of abstraction naturally
differs among games and one game may have several levels
of abstraction where decision making can be characterized.
For instance, playing a game of Mario entails decisions at the
aesthetic level (do I prefer fireball or raccoon tail?) and the
tactical level (do I attempt to engage or evade enemies?) as
well as the atomic level (do I press up or down?). Decision
style characterization should hypothetically be possible at all
three levels [3], and the relevant level of analysis must be de-
termined by the purpose of the decision style characterization.

In this paper we address the problem of modeling human
decision making in games in the following two ways: Firstly,
we attempt to represent archetypical decision making styles
in a test-bed game via game playing agents which we call
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Fig. 1: The intended designer use of procedural personas.

procedural personas. Secondly, we map agent decision making
styles to human ones in order to measure to which extent
our personas are capable of expressing typical human ways
of making decisions within our test-bed game. The chief
motivation for the work presented is to use agents that express
decision making styles to test manually or procedurally/co-
creatively [4] generated game content such as levels [5]. This
could support the game design process by providing low-cost,
low-fidelity mock playtesting of content during development.
Such a method could e.g. be of use and interest to level
designers during the design of a new level, allowing for quick
impressions of what decisions archetypical players might make
in the level. By continuously comparing procedural persona
behavior with human behavior, and adjusting persona decision
making styles accordingly, the personas might be continuously
refined during iterative development and playtesting cycles
to better represent identified subgroups of human players, as
outlined in our previous work [3]. The envisioned process is
illustrated in Fig. 1.

In order to model decision making styles, this paper
contributes to and expands on previous work [6] by developing
personas based on linear perceptrons and comparing their
performance against previously developed personas based on



Q-learning as well as several baseline agents. Our previous
approach was limited in terms of performance, generalizability,
and scalability; the approach presented here is an attempt
to address these problems. To describe this process, we first
present related work and outline how our approach is based
on psychological decision theory. Secondly, we briefly present
the reinforcement learning experiments which we are building
on. Thirdly, we describe our method of and fitness functions
for evolving linear perceptrons to represent archetypical de-
cision making styles for procedural personas. Fourthly, we
present our experiments and results in using these evolved
personas to express decision making styles and capture typical
player styles in decision making and comparing them to the
reinforcement learning agents. We conclude by arguing that
evolutionary methods are better suited to replicating observed
player behavior than previously applied td-learning techniques,
and we point out limitations and under-explored aspects of the
method.

II. RELATED WORK

This paper builds upon a theoretical framework of human
decision-making; additionally, it is related to player modeling
as well as the simulation-based evaluation of procedurally
generated content. A brief survey of these domains follows.

A. Decision Theory

As described in [6], decision theory [7] deals with hu-
man decision making under risk and uncertainty. One of its
fundamental assumptions is that human decision making can
be described as being shaped by utility. Briefly stated, utility
captures how much an expected outcome of a decision is
worth to the decision maker versus the expected cost and
risk of attaining that outcome. Humans typically attempt to
optimize the utility gained from a decision which is then
considered rational action. Research in decision theory has
shown that the nature of this optimization process is shaped
by the utility expected from the decision, meaning that the
assignment of cognitive resources and the balance between
heuristic and analytic reasoning is based on the perceived
importance of the decision [8]. The decision making process
happens under bounded rationality [9]. Generally, utility is
considered idiosyncratic and decision theory does not try to
explain why a given outcome has utility to the decision maker
(though other directions in psychology such as personality
psychology [10] or motivational psychology [11] might be
helpful in explaining this). Instead, it looks at the decision
maker’s tendency to take risks to attain particular outcomes.
This means that for real world decision making problems, the
possible sources of utility are practically infinite though often
context can be used to identify probable sources of utility.

Games, and certain computer games in particular, can be
considered special, limited cases of decision making problems,
when the game’s decision space is delineated by its rules and
mechanics. As a game becomes more complex this decision
space of course expands and complexifies rapidly. However,
knowing the rules and mechanics of a game provides a
well-defined context for making assumptions about possible
sources of utility in the game. A game’s stated goals and
the possibilities inherent in the game’s mechanics constitute
affordances [12] which are likely to be of utility to the player,

since they are typically the very reason for playing the game
in the first place. By analyzing the mechanics of a game we
should be able to detect likely sources of utility, though due
to the idiosyncratic nature of utilities we can never be certain
to have covered all cases. This is relevant to our purpose
of developing decision making procedural personas, as the
analysis of the affordances in a game can provide us with
a list of possible goals to direct the behaviors of procedural
personas. Once a hierarchy of goals, representing sources of
utility, has been established for a persona, we can effectively
use this as a representation or metaphor for a decision making
style.

In the following section, we describe how this approach can
be used to enable a form of player modeling which seems to
be relatively underexplored in the academic literature, though
perhaps more common for ad hoc industry purposes [13].

B. Player Modeling

Since this work aims to represent archetypical decision
making styles in our test-bed game, each resulting persona
can be considered an individual player model. Smith et al.
[13] provide a useful inclusive taxonomy of player modeling
methodologies. The work categorizes player modeling tech-
niques via four different facets: the scope, purpose, domain,
and source of the player model. Scope determines the gen-
eralizability of the player model. For this work, the scope
of each model is limited to the game in question, since the
decisions and utilities are contingent on the particular game,
in this case MiniDungeons. Purpose refers to the intended
use of the model. Our method is generative in the sense that
the final intent is to express decision making styles in games,
either styles defined a priori by designers or styles adapted to
match human styles observed across groups or from individual
playthroughs. Domain refers to what the model generates, in
this case player decisions expressed through in-game actions
at the same level that human players would. Source refers to
the motivation or substrate from which the player model is
derived. The models generated from our approach are hybrids
in the taxonomy. They are initially interpreted in the sense that
the a priori personas are developed by the game’s designers
based on expert knowledge about typical decision making
styles of human players, but aim to grow empirically induced
in the sense that they are partly evaluated on how well they
express the decision making styles of actual human players and
ultimately should evolve to adapt to these. As such, the method
attempts to achieve player modeling by evolving from game
designer interpreted personas to player data induced personas,
bridging the designer’s expert knowledge and empirical play
data. Approaching the problem from an alternative framework
by Yannakakis et al. [14] our method combines a way to move
iteratively from a model-based (designer centric) player model
to a model-free (data centric) player model, creating a hybrid
player model.

C. Procedural Content Generation

As stated above, the main goal of the procedural persona
method is to provide low-cost, low-fidelity mock playtesting
in a manner that is useful in supporting game content creation.
This may be useful to a human designer manually creating a
piece of content in an editor, but human designers are, to some



extent, capable of informally mentally simulating different
decision making styles their content might enable. We would
argue that the procedural persona method could potentially be
of greater use to search based procedural content generation
processes [15] that are either wholly procedural or based on
mixed-initiative co-creative processes where a human designer
and an AI-driven support tool collaboratively produce content
[16]. Human designers might use procedural personas as input
to a co-creative process, controlling the AI’s search for novel
content by asking it to generate content that fits certain decision
making styles.

III. PREVIOUS WORK

In this section we briefly present the previous work this pa-
per builds on, and the testbed game on which the experiments
were performed.

A. MiniDungeons

The test-bed game used, MiniDungeons, implements the
fundamental mechanics of a roguelike dungeon exploration
game. The turn-based game puts the player in a top-down
viewed tile-based dungeon (of 12 by 12 tiles) containing mon-
sters, potions, and treasures, as displayed in Fig. 3. Impassable
tiles constitute the walls of the dungeon, while passable tiles
may contain enemies or items for the player. All of the level
is visible to the player who can move freely between passable
tiles. When the player moves to a tile occupied by a monster or
item, immediately the monster is fought or the item is collected
and applied. The player has a 40 hit point (HP) health counter
and dies if this drops to zero. Monsters randomly deal between
5 and 14 HP of damage while potions heal 10 HP up to the
maximum value of 40 HP. Treasures have no game mechanical
effect other than adding to a counter of collected treasures
which is displayed to the player. The game contains 10 levels
(see Fig. 2) and a tutorial level. Excepting the tutorial level,
all levels are generated using the multi-genre mixed-initiative
co-creation tool Sentient Sketchbook [17]. For further details
on the test-bed game and discussion of its properties, we refer
to our previous work [6].

B. Previous Experiments with Q-learning

Our previous work demonstrated a proof-of-concept for
the idea of training procedural personas to express decision
making styles using temporal difference-based (td-based) re-
inforcement learning, specifically Q-learning.

A data set of 380 human play traces from MiniDungeons
was collected and used as a reference for determining to which
extent the defined personas expressed actual human decision
making styles. The resulting personas matched the human
players’ decisions with an average precision of 78%, a result
that would not have been feasible with any one persona alone.

The specification and logic of the personas was straight-
forward and intuitive, as the reinforcing rewards given to the
agents during training worked as a direct metaphor for the
personas’ respective utilities. For instance a “Monster Killer”
type persona was given a large reward for every monster
killed in a given level and a smaller reward for reaching the
exit. Personas trained on this reward configuration consistently

Fig. 3: The MiniDungeons interface while a game is played.

expressed decisions that we would argue are subjectively
interpretable as a “Monster Killer” style.

Unfortunately, the technique of using td-based reinforce-
ment learning suffers from a number of issues that precludes
it from being useful for the practical purpose of on-line inter-
active content creation. Firstly, the method is computationally
expensive as it requires the Q-learning agent to run through a
significant number of simulations to learn the appropriate Q-
table, amounting to hours worth of training time on a modern
desktop computer to train a single persona for a single level.
Secondly, given the applied technique of Q-learning, where
agents were trained on an only slightly abstracted version
of the state space, the personas do not generalize across
levels. This necessitates retraining of the personas whenever
the level content is changed, further exacerbating the problem
of practical applicability. Thirdly, the Q-learning agents would
not provide useful starting points for adapting the personas
to observed human behavior as it would most likely be
more efficient to train new agents using inverse reinforcement
learning to represent groups of human players’ or individual
human players’ decision making styles. This would again make
it impractical to implement the desired iterative hybridization
of the designer specified interpreted model and the observation
based induced model. Though optimizations, such as applying
active learning to the Q-learning process, might possibly
mediate these drawbacks, the sum of the concerns listed above
motivates us to attempt to replicate the results of the td-based
reinforcement learning technique with faster, evolution-based
methods.

IV. METHODS

In the following section we describe how we achieve
this by evolving linear perceptrons selecting which of the
currently available affordances to act on. While these agents
are structured very differently, they enact decision making
styles equivalent to those of the Q-learning agents trained on
observation of the game’s state space.
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Fig. 2: The levels included in MiniDungeons. The tutorial level is hand-crafted, and could be played multiple times. The “real”
levels (1-10) were played only once (no retries if the hero died) and were created in a mixed-initiative fashion.

A. Evolved Controllers

In order to control the personas in MiniDungeons and
express the desired decision making styles, 7 linear perceptrons
are combined into an evolvable controller. The perceptrons take
8 inputs in addition to the bias, and through weighted sums
produce the 7 outputs. The 8 inputs consist of the hero’s current
hit points (1 to 40) and 7 distance measures derived from A*
path finding (with Manhattan Distance heuristic) in the maze:
the distance to the nearest monster, the distance to the nearest
treasure, the distance to the nearest treasure while avoiding
monsters, the distance to the nearest potion, the distance to
the nearest potion while avoiding monsters, the distance to the
level exit, and the distance to the exit while avoiding monsters.
The inputs are chosen under the assumption that human players
will typically survey the whole play area and pick from the
available paths to the various affordances in the level. The
distance to each affordance type, accepting and avoiding the
risk of fighting a monster, are then considered an acceptable
abstraction of the game state into a number of utility providing
options that the player can choose from. In the same vein, each
of the linear perceptrons are mapped to represent one of the
available strategies, with or without risk taking: pursuing the
nearest monster, pursuing the nearest treasure, pursuing the
nearest treasure while avoiding monsters, pursuing the nearest
potion, pursuing the nearest potion while avoiding monsters,
pursuing the exit, or pursuing the exit while avoiding monsters.
The controller re-evaluates the state of the game for each
step. The network is fed forward, and the linear perceptron
with the highest activation value is identified and from the
corresponding affordance, the next step in the path is selected.
In the case that an affordance is unavailable, e.g. if all paths
to the nearest treasure, avoiding monsters, is blocked, the next
ranked affordance, based on activation, is selected, and so on,
until the controller ultimately picks the risky path to the exit
as a final fall-back affordance.

B. Evolutionary algorithm

We use a (µ+α) evolution strategy without self-adaptation.
This is a truncation-based evolutionary algorithm which for
each generation retains the 50% best performing individuals,
discards the lowest performing half, and produces single-
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Fig. 4: The controller network which was evolved to generate
the five personas.

parent offspring from the remaining individuals to maintain the
population size. Finally all population individuals are mutated,
except for members of an elite group, consisting of the top
performing 2% of the population, which remains unchanged.
Mutation is accomplished by changing each connection weight
in the network with a random number drawn from a Gaussian
distribution centered around zero with a standard deviation of
0.3. All experiments are done using a population size of 100
individuals, trained for 100 generations. One set of personas
are evolved for one level specifically for 100 generations.
Another, generalized, set of personas are evolved by playing on
9 of the 10 levels, keeping the 10th level unseen. As such, each
generation of these generalized agents is exposed to 9 times
the level content compared to the level specific personas.

C. Fitness Functions for Evolving Personas

As noted above, the procedural personas are evolved to
represent archetypical decision making styles, motivated by
utilities. In an effort to represent this in the personas, the
fitness functions used to evolve the linear perceptrons are
constructed as compounds of the relative importance of each
potential source of utility in the game and the persona’s ability



to achieve these utilities. Five different potential sources of
positive or negative utility were identified in the MiniDungeons
game, based on an analysis of the game’s mechanics: making
a move, fighting a monster, collecting a treasure, dying, and
reaching the exit of the level. Collecting an HP restoring potion
could have been considered a source of utility in itself, but
was not included, as it was considered subsumed under the
other sources of utility. This resulted in five distinct personas
being defined: The Exit persona simply tries to reach the
exit of the level, representing a player who mainly cares
about progressing through the levels of the game. The Runner
persona attempts to reach the exit in the fewest steps possible,
representing a step-optimizing “speed runner”. The Survivalist
avoids damage to the largest extent possible, while moving
toward the exit, representing a conservative player who does
not like to lose. The Monster Killer represents an aggressive
player by seeking out and fighting every monster in the
level, while attempting to reach the exit without dying. The
Treasure Collector represents a completionist player who cares
about collecting every treasure, before progressing to the next
level. The specific utilities of the personas were set to mirror
the rewards given to our Q-learning agents in our previous
work [6] as closely as possible. The individual values are
presented in Table I. Collecting treasure and killing monsters
are associated with positive utility, while moving or dying are
associated with negative utility for the relevant personas. All
personas derive a slight amount of negative utility form each
move made, in order to ensure progression through the level.
The value subtracted is doubled for the Runner persona.

Agents’ fitness scores are calculated by dividing the
amount of utility obtained by the individual during the
playthrough by the maximally attainable utility for the level
in question. The only exception to this rule is the number of
moves made, which is not normalized. The sources of utility
depend on the persona and are shown in Table I along with
their utility weights. For personas evolved on a single level,
the fitness is computed for each playthrough of the level. For
personas evolved across multiple levels, the fitness for each
level played is first computed after which the mean across all
9 played levels is computed and used as the fitness score for
the individual in that generation.

D. Decision-level playtrace comparison

To determine the degree to which the decision making
styles of the evolved personas match the previous reinforce-
ment learning trained personas, as well as actual human
decision making styles, a simple measure of agreement is used.
For each human play trace, we replay the whole game and at
each decision point (in this case every action), we input the
state description to all of our artificial agents, and compare
the player’s decision to the decisions of the different agents.
Essentially, we query each agent “What would you do, given
this situation?”. The resulting metric is a simple count of
agreements, normalized to a ratio from 0 to 1 by the number
of decisions in the human play trace.

E. Baseline Agents

In order to allow for a fair comparison of the performance
of the reinforcement learning trained agents and the evolved
agents, a number of baseline agents are constructed. The

TABLE I: All personas tested in the experiments.

Utility weight of tiles or events
Persona Code Moved Monster Treasure Death Exit

Q-learning
Exit qE 0.5
Runner qR -0.01 0.5
Survivalist qS -1 0.5
Monster Killer qM 1 0.5
Treasure Coll. qT 1 0.5

Evolution
Exit eE -0.01 0.5
Runner eR -0.02 0.5
Survivalist eS -0.01 -1 0.5
Monster Killer eM -0.01 1 0.5
Treasure Coll. eT -0.01 1 0.5

TABLE II: Baseline agents used in experiments.

Baseline Agent Code Method Primary Objective

Monster Killer aM A* ignoring monsters Nearest monster
Runner aR A* ignoring monsters Exit
Treasure Collector aT A* ignoring monsters Nearest treasure
Runner Safe aR,s A* avoiding monsters Exit
Treasure Collector Safe aT,s A* avoiding monsters Nearest treasure
Random Controller Z Random legal move None

simplest one of these is a random controller that every step
picks a legal (i.e. leading to a passable tile) decision in the
level. Additionally, five more advanced baseline agents are
constructed using a finite state machine on top of the A*
algorithm for pathfinding. These agents act single-mindedly
by always making a decision for following the shortest path
toward one primary objective until this objective is exhausted,
after which they follow the shortest path to the exit. Their
objectives are to pursue either monsters, treasure, or the exit.
The treasure and exit objectives are implemented in two
modes: one where the baseline agent tries to avoid monsters
along the path if possible and one where monsters are ignored
and fought if they are present along the shortest path. The
baseline agents are not considered personas as such, since
their behaviors are too simple, but are included in an attempt
to provide baselines for simple random moves, and for single-
mindedly following paths to classes of affordances in the game.
The complete list of personas tested in our experiments is
provided in Table I along with the parameters for their training
or evolution.

V. RESULTS

To verify that the developed personas actually exhibit deci-
sion making styles in accordance with their intended persona
identity, Table III presents the performance of each individual
agent across all levels. This verification is necessarily a process
of subjective interpretation. From Table III we can identify that
both Q-learning based and evolved Exit personas engage in
little combat. Additionally they exhibit a relatively low degree
of exploration. The Monster Killer personas engage with the
most monsters across methods, exhibiting the desired decision
making style. Interestingly, the evolved Monster Killer per-
sonas tend to collect more potions than the Q-learning trained
Monster Killer and also succeed in killing more monsters. The
Runner persona exhibits a relatively low exploration value.
In the case of the Q-learning agent, the exploration is lower
than most other personas, but significantly higher than the



TABLE III: Average statistics of each persona’s play traces
across all levels in MiniDungeons. M stands for monsters
killed, T for treasures collected, P for potions drunk, Ex for
tiles explored, and D for times died. With the exception of
D, values are averaged across 20 test runs; D includes all
playthroughs tested.

Persona or Agent M T P Ex D

qE Exit 22.8 9.4 2.1 237.9 8
qM Monster Killer 54.4 9.0 15.9 300.3 66
qR Runner 22.4 7.7 2.0 231.8 19
qS Survivalist 4.0 5.0 1.0 135.0 0
qT Treasure Collector 48.6 49.4 3.9 335.7 167
eE Exit 22.1 5.5 1.6 217.0 10
eM Monster Killer 69.5 10.3 30.9 413.9 89
eR Runner 23.1 6.5 1.4 230.2 15
eS Survivalist 21.6 7.2 1.2 227.2 2
eT Treasure Collector 50.1 57.5 6.5 413.9 151
ΣeE Exit 24.2 4.5 1.4 217.7 30
ΣeM Monster Killer 75.5 10.4 37.0 454.8 102
ΣeR Runner 24.1 4.7 1.7 216.8 27
ΣeS Survivalist 24.1 5.0 1.9 221.0 23
ΣeT Treasure Collector 58.9 60.4 23.1 493.4 93
aM Monster Killer 49.2 3.8 1.2 200.6 200
aR Runner 24.3 4.8 1.7 218.9 25
aR,s Runner Safe 19.0 4.5 1.4 225.4 31
aT Treasure Collector 48.2 49.1 1.6 329.9 190
aT,s Treasure Collector Safe 44.7 57.5 3.0 421.9 122
Z Random Controller 58.5 38.4 19.9 521.2 123

survivalist persona, while in the case of the evolved personas
it is practically tied with the survivalist. The special case of
the Q-learning survivalist can be attributed to the fact that in
some cases that persona opts to stop progressing when faced
with monsters blocking its path, as is also evident from the low
number of monsters killed. The evolved survivalist on the other
hand proceeds to fight monsters when this is the only available
course of action to reach the exit. Given the restricted nature
of the play environment the Runner and Survivalist generally
overlap in their performance statistics, as the safest and fastest
paths to the exit typically deviate with only a few steps. The
Treasure Collector personas unsurprisingly consistently exhibit
the greatest collection of treasures as well as the greatest
exploration of the game levels. The Q-learning trained Treasure
Collector and the level specifically evolved Treasure Collector
seem relatively comparable. Notably, the generalized, evolved
Treasure Collector performs better than both of them and
picks up more potions on its way through the level. The
A* based baseline agents generally perform worse than their
persona counterparts, but following comparative strategies,
while the random controller has the largest exploration ratio
of all personas and agents, since the controller just roams the
map until it randomly reaches the exit, runs out of allocated
testing actions, or dies. A set of indicative heatmaps from level
7 is included in Fig. 5, showing the varied behaviors of the
personas and agents.

A. Agreements between Q-learning personas and evolved per-
sonas

As mentioned above, the evolved personas’ fitness func-
tions are designed in an attempt to make them emulate the
decision making styles expressed by the Q-learning trained per-
sonas. To test whether this is accomplished, the decision-level
playtrace comparison method described in Sec. IV-D is applied
between similar personas, across all 380 collected playtraces,
using the human decisions as the baseline. This comparison

TABLE IV: Agreements between individual personas based on
human players’ play traces.

Q-learning Persona Evolved Persona Agreement

qE Exit eE Exit 0.71
qM Monster Killer eM Monster Killer 0.69
qR Runner eR Runner 0.72
qS Survivalist eS Survivalist 0.63
qT Treasure Collector eT Treasure Collector 0.70

TABLE V: Agreements between personas/baseline agents and
human players. Evolved personas which were generalized by
holding out the test level are marked with a Σ.

Q-learning Persona Agreement Evolved Persona Agreement

qE Exit 0.52 eE Exit 0.55
qR Runner 0.53 eR Runner 0.56
qS Survivalist 0.49 eS Survivalist 0.57
qM Monster Killer 0.54 eM Monster Killer 0.59
qT Treasure Collector 0.62 eT Treasure Collector 0.71
Baseline Agent Agreement Generalized persona Agreement

aM Monster Killer 0.53 ΣeE Exit 0.55
aR Runner 0.55 ΣeR Runner 0.55
aR,s Runner Safe 0.55 ΣeS Survivalist 0.56
aT Treasure Collector 0.71 ΣeM Monster Killer 0.60
aT,s Treasure Collector Safe 0.70 ΣeT Treasure Collector 0.74
Z Random Controller 0.43

is not made between Q-learning personas and generalized,
evolved personas, since these would have to be tested on levels
unseen to them, but seen to the Q-learning personas. For each
step in each human play trace, the game is advanced to the
game state from which the human play trace was collected. The
game state is then input to the comparable pair of personas, and
both are queried for their next action. If they report the same
action, even if in disagreement with the human player, this is
counted as an inter-persona agreement. If they report different
actions, irregardless of the human choice, this is counted as
an inter-persona disagreement. The results are presented in
Table IV. As is evident, all types of personas seem to exhibit
agreements at levels ranging from approximately 60% to 70%.
Though better than random performance, this indicates that the
weightings of utilities cannot be naively transferred from one
method to the other.

B. Agreements between personas and human players

To ascertain to which extent the individual personas express
actual human player decision making styles all personas (as
well as baseline agents) are compared to the human play data,
again using the decision-level playtrace comparison method. In
this configuration, agent reports are only counted as persona-
human agreements if they report exactly the same action that
is present in the human play trace, in response to the game
state. The results for each agent, averaged across all human
play traces on all levels, are presented in Table V.

From Table V it is clear that the average action agree-
ment ratio across all players seems limited, perhaps with the
exception of the Treasure Collector personas and baseline
agents. This is, however, to be expected, as each persona is
should express a distinct decision style which should only be
displayed by some human players. Therefore, averaging the
agreements across all players on all levels obscures the human
decision making style expressiveness of each persona. To
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Fig. 5: Heatmaps of all personas and baseline agents on level 7 of MiniDungeons.

mitigate this problem, we instead map each human play trace
to the persona which agrees the most with it, or put differently,
the best matching persona. Table VI shows the frequency with
which each persona or agent is the best match for the human
players. The results indicate that treasure seeking personas
dominate the covering of the human play traces, followed
by monster killing, and finally the exit seeking strategies
expressed; Survivalist and Runner personas only cover a few
human play traces. The baseline agents also cover some human
playtraces. This could be attributed to the limited decision
space of the game and the fact that treasure collecting is a
common culturally reinforced affordance for roguelike games;
without further information about the players, however, this
remains speculation. Two notable characteristics of the results,
however, is that the evolved personas generally cover more of
the human play trace sample than the other methods, and that
the generalized, evolved agents tend to attain better coverage
of the human play traces than the level specific ones. This
could speculatively be attributed to the fact that the generalized
evolved agents have learned from a broader range of examples.

While the frequency table provides insight into how much
of the human sample each persona/agent covers, it is also
relevant to investigate the quality of each persona/agent’s
coverage. Table VII displays the mean agreement for each
persona or agent. The mean is calculated over all human
playtraces for which the persona or agent was the best match,
for every level. From the results it is clear that the best
matching personas agree with human players on between 60%
and 88% of decisions, with a great deal of variation across
levels. In order to better capture each persona’s agreement
with humans, Table VIII lists the mean agreement values for
each persona across all play traces on all levels. Generally, the
personas display mean performances ranging from 0.7 to 0.8,
which is comparable to the baseline agents in the relatively
few cases that they attain a best match, but still leaves room

TABLE VI: Frequencies of personas and baseline agents being
the best match for individual human play traces.

Persona or Agent 1 2 3 4 5 6 7 8 9 10 Total

qE Exit 0 0 0 0 0 0 1 0 3 1 5
qR Runner 0 0 2 0 0 1 1 0 0 0 4
qS Survivalist 0 0 0 1 0 0 0 0 0 0 1
qT Treasure Collector 1 2 1 1 4 1 2 1 0 2 15
eE Exit 0 0 0 0 0 0 1 0 0 1 2
eR Runner 0 0 0 0 0 0 2 0 0 0 2
eS Survivalist 0 0 0 0 0 0 0 1 0 0 1
eM Monster Killer 8 0 0 1 0 0 1 0 3 0 13
eT Treasure Collector 0 15 19 13 10 12 1 11 7 3 91
ΣeM Monster Killer 0 0 0 1 1 0 6 1 0 0 9
ΣeT Treasure Collector 28 7 13 20 19 22 21 23 18 23 194
aE,s Exit Safe 0 1 0 0 0 0 0 0 0 0 1
aT Treasure Collector 1 7 1 0 4 2 0 0 1 1 17
aT,s Treasure Collector Safe 0 6 2 1 0 0 2 1 6 7 25
Z Random Controller 0 0 0 0 0 0 0 0 0 0 0
Total 38 38 38 38 38 38 38 38 38 38 380

for improvement at matching human decision making styles.

Finally, Table IX compares the mean agreements for best
matches between Q-learning and evolved personas designed
to express the same decision making style. For most personas,
not enough human play traces were matched for robust com-
parisons. The Treasure Collectors, however, show a borderline
significant difference between qT and eT using Wilcoxon’s
Rank Sum test (α-level 0.05). Comparisons are not made
between baseline agents and personas, since the baseline
agents are not based on utilities.

VI. DISCUSSION

It could be argued that the testbed game we employ is too
simple and not representative of actual games. However, we
argue that the game is similar in complexity to many of a new
wave of roguelike games that have recently become popular
on hand-held devices - the likes of 868-hack, Hoplite and



TABLE VII: Mean agreement ratios for personas and baseline
agents when they were selected as best matches.

Persona or Agent 1 2 3 4 5 6 7 8 9 10

qE 0.78 0.86 0.86
qR 0.70 0.78 0.74
qS 0.60
qT 0.65 0.71 0.77 0.78 0.79 0.62 0.66 0.74 0.85
eE 0.88 0.85
eR 0.72
eS 0.82
eM 0.72 0.79 0.69 0.74
eT 0.79 0.80 0.73 0.76 0.81 0.66 0.79 0.74 0.86

ΣeM 0.70 0.72 0.75 0.80
ΣeT 0.75 0.71 0.83 0.77 0.75 0.78 0.72 0.83 0.76 0.82
aE,s 0.71
aT 0.69 0.76 0.86 0.73 0.77 0.72 0.87

aT,s 0.75 0.79 0.78 0.66 0.79 0.81 0.83

TABLE VIII: Mean agreement ratio across all traces from all
levels where personas or agents were selected as best matches.

Persona or Agent n Mean SD Min Max

qE Exit 5 0.84 0.07 0.76 0.94
qR Runner 4 0.73 0.06 0.64 0.78
qS Survivalist 1 0.60 0.60 0.60
qT Treasure Collector 15 0.74 0.07 0.62 0.85
eE Exit 2 0.87 0.02 0.85 0.88
eR Runner 2 0.72 0.16 0.61 0.83
eS Survivalist 1 0.82 0.82 0.82
eM Monster Killer 13 0.73 0.05 0.65 0.84
eT Treasure Collector 91 0.78 0.07 0.56 0.95
ΣeM Monster Killer 9 0.75 0.06 0.64 0.82
ΣeT Treasure Collector 194 0.78 0.07 0.57 0.95
aE,s Exit Safe 1 0.71 0.71 0.71
aT Treasure Collector 17 0.76 0.06 0.67 0.87
aT,s Treasure Collector Safe 25 0.79 0.07 0.63 0.90

Out There. Those games cannot be considered “toy problems”
more than any other successful game. This is not to say that
MiniDungeons is as entertaining or “deep” (in game design
terms) as those games. Future work should include iterating
over the MiniDungeons design to provide more satisfying
gameplay, which will help us collect more and better player
data.

VII. CONCLUSION

We have addressed the problem of creating procedural
personas, which are generalized generative player models that
represent the behavior of a class of players with particular
playing styles or decision making styles. Based on an analysis
of the affordances in a simple roguelike game, we identified
five different reward structures, which were used in the training
of personas. A persona representation was devised based on
an evolvable perceptron that selects which immediate goal to
pursue based on knowledge of internal state and distances to
various level features. This evolutionary persona representation
was compared with a previously devised method based on Q-
learning, and it was found that the evolutionary solution is
better both at agreeing with human players and optimizing
the rewards, while also being generalizable to unseen levels.
These models are well-suited for e.g. simulation-based testing
in procedural content generation.
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TABLE IX: Wilcoxon Rank Sum Test for differences between
persona pairs, with personas created either via Q-learning or
evolution.

Persona n Persona n W p

qE Exit 5 eE Exit 2 6.0 0.86
qR Runner 4 eR Runner 2 4.0 1.00
qS Survivalist 1 eS Survivalist 1 1.0 1.00
qM Monster Killer 0 qM Monster Killer 13
qT Treasure Collector 15 eT Treasure Collector 91 880.5 0.07
qE Exit 5 ΣeE Exit 0
qR Runner 4 ΣeR Runner 0
qS Survivalist 1 ΣeS Survivalist 0
qM Monster Killer 0 ΣeM Monster Killer 9
qT Treasure Collector 15 ΣeT Treasure Collector 194 1801.0 0.13
eE Exit 2 ΣeE Exit 0
eR Runner 2 ΣeR Runner 0
eS Survivalist 1 ΣeS Survivalist 0
eM Monster Killer 13 ΣeM Monster Killer 9 67.0 0.60
eT Treasure Collector 91 ΣeT Treasure Collector 194 8553.5 0.67
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