
Game State Learning via Game Scene Augmentation
Chintan Trivedi

University of Malta, Msida, Malta
ctriv01@um.edu.mt

Konstantinos Makantasis
University of Malta, Msida, Malta

konstantinos.makantasis@um.edu.mt

Antonios Liapis
University of Malta, Msida, Malta

antonios.liapis@um.edu.mt

Georgios N. Yannakakis
University of Malta, Msida, Malta
georgios.yannakakis@um.edu.mt

ABSTRACT
Having access to accurate game state information is of utmost im-
portance for any artificial intelligence task including game-playing,
testing, player modeling, and procedural content generation. Self-
Supervised Learning (SSL) techniques have shown to be capa-
ble of inferring accurate game state information from the high-
dimensional pixel input of game footage into compressed latent
representations. Contrastive Learning is a popular SSL paradigm
where the visual understanding of the game’s images comes from
contrasting dissimilar and similar game states defined by simple im-
age augmentation methods. In this study, we introduce a new game
scene augmentation technique—named GameCLR—that takes ad-
vantage of the game-engine to define and synthesize specific, highly-
controlled renderings of different game states, thereby, boosting
contrastive learning performance. We test our GameCLR technique
on images of the CARLA driving simulator environment and com-
pare it against the popular SimCLR baseline SSLmethod. Our results
suggest that GameCLR can infer the game’s state information from
game footage more accurately compared to the baseline. Our pro-
posed approach allows us to conduct game artificial intelligence
research by directly utilizing screen pixels as input.

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions; Visual content-based indexing and retrieval; • Applied com-
puting → Computer games.

KEYWORDS
computer vision, contrastive learning, self-supervised learning, rep-
resentation learning, game state representations

ACM Reference Format:
Chintan Trivedi, Konstantinos Makantasis, Antonios Liapis, and Georgios N.
Yannakakis. 2022. Game State Learning via Game Scene Augmentation. In
FDG ’22: Proceedings of the 17th International Conference on the Foundations
of Digital Games (FDG ’22), September 5–8, 2022, Athens, Greece. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3555858.3555902

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’22, September 5–8, 2022, Athens, Greece
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9795-7/22/09. . . $15.00
https://doi.org/10.1145/3555858.3555902

1 INTRODUCTION
Extensive work [2, 3, 13] in dissimilar domains of AI and games such
as player experience modeling, general gameplaying or content
generation make use of the internal state of the game [1, 9] ob-
tained from the game engine. Using computer vision to obtain such
state information from on-screen game footage, instead of directly
from the game engine, remains challenging [11]. Recent computer
vision advancements with contrastive learning [7], however, show
promise in tackling these challenges.

Contrastive learning belongs to the family of self-supervised
representation learning (SSL) methods in computer vision that use
a “pairwise-comparison” approach which operates by contrasting
semantically similar and dissimilar images. The pairwise mecha-
nism helps the vision model to identify critical visual features that
define the semantics of these images. Recent work [12] has applied
SSL to learn state representations in games from pixel input. Such
methods, however, rely on simple image augmentation techniques
(e.g. image flipping, rotation, and brightness change) to create se-
mantically similar pairs of images. In this work, we investigate
whether having access to a game engine can help us synthesize
highly-controlled image augmentations that are better suited for
learning such vision models. In particular, we use the game engine
to construct better similar and dissimilar pairings via the proposed
game scene augmentation technique, named GameCLR, for the task
of game state representation learning.

GameCLR synthesizes images that represent similar game states
that are highly dissimilar in the pixel-space (synthetic positives) and
images that represent different game states but are very similar in
the pixel-space (synthetic negatives). Within the context of a car
racing game, Fig. 1 visualizes an example of such a representation
space containing images that act as synthetic positives and nega-
tives to a reference image called the anchor. Our hypothesis is that
by including such images in the contrastive learning process, our
model will be better equipped to learn the important visual features
that define any particular game state. Moreover, as we are defining
the positive and negative pairings generated by the game engine,
we also have a level of control over the learning process by guiding
the model to learn what distinguishing factors are of importance
to us (i.e., traffic information) and which ones can be considered
as invariant for learning (e.g. rainy weather, color of the car). We
test how training a vision model using GameCLR compares against
a baseline SSL method SimCLR, on the CARLA driving simulator
[6]. Our findings suggest that synthesizing specific images from
the game engine can boost the performance of contrastive learning
methods for learning critical game state features from images.

https://doi.org/10.1145/3555858.3555902
https://doi.org/10.1145/3555858.3555902

FDG ’22, September 5–8, 2022, Athens, Greece Trivedi et al.

Figure 1: The GameCLR Contrastive Learning Framework.

Table 1: Summary of the regular Image Augmentations and
Game Scene Augmentations used in our paper.

Image-based Augmentations: 𝑔(𝑋)
Flipping, Noise, Change Brightness, Rotation, etc.

Game Scene-preserving Augmentations: 𝑒𝑝 (𝑆)
Change weather (clear, cloudy, windy, wet, rainy)
Change time of day (noon, sunset, midnight)
Change ego-vehicle color (5 color options)

Game Scene-altering Augmentations: 𝑒𝑎 (𝑆)
Add one, two, or three vehicles (one per lane)

2 METHODOLOGY
In this study, we use the CARLA [6] urban driving simulator (see
Fig. 1) which provides access to its Unreal engine via a Python
API. A scene 𝑆 in CARLA is defined as the current game state of
its Unreal engine, which, when put through the game’s graphic
renderer 𝑟 , yields the pixel output 𝑋 shown to the user on the
screen (i.e., 𝑋 = 𝑟 (𝑆)). We take advantage of this game engine to
generate a dataset for testing two contrastive learning methods:
(1) a baseline SSL method SimCLR [4] which uses simple image
augmentations𝑔(𝑋); and (2) our proposedGameCLRmethod which
uses the CARLA game engine to first apply game scene augmenta-
tion 𝑆 ′ = 𝑒 (𝑆) before going through rendering 𝑋 ′ = 𝑟 (𝑆 ′) and then
applying regular image augmentations 𝑔(𝑋 ′). All the augmentation
techniques used across both methods are described in Table 1.

2.1 SimCLR
In 2020, Chen et al. [4] proposed SimCLR, a simple framework
for contrastive learning of visual representations. A contrastive
approach between similar and dissimilar images is used to learn im-
age representations based on the content present in the images. Its
pipeline has four major components: an image augmentation func-
tion 𝑔 using simple image augmentations, a convolutional neural
network encoder function 𝑓 , a small fully-connected network called

the projection head ℎ that maps representations to an embedding
space, and a contrastive loss L that is applied on these embeddings.
Under this framework, simple image augmentations [10] (e.g. ro-
tation, brightness, addition of noise, etc.) are used to create two
different views of the same image that are semantically similar,
referred to as a positive pair. Similarly, any two views coming from
distinct images are defined as negative pairs due to semantic dis-
similarity. For a given embedding 𝑎 of a reference image called
the anchor, and its positive pair’s embedding 𝑝 as well as multiple
negative pairs’ embeddings in set 𝑁 , the contrastive probability
can be calculated as per Eq. (1).

P(𝑎, 𝑝) = exp(𝑎𝑇 𝑝/𝜏)
exp(𝑎𝑇 𝑝/𝜏) +∑

𝑛∈𝑁 exp(𝑎𝑇𝑛/𝜏)
(1)

where 𝜏 is the temperature hyper-parameter and 𝑎𝑇 is the trans-
posed 𝑎 vector. Thus, the contrastive loss in SimCLR with respect
to the anchor 𝑎 and all its associated positive pairs in a set 𝑃 can be
defined as per Eq. (2):

L(𝑎, 𝑃, 𝑁) = −
∑︁
𝑝∈𝑃

logP(𝑎, 𝑝) (2)

We implement this SimCLR training method on our CARLA
game dataset using the solo-learn framework [5]. We spawn the
ego-vehicle at random locations and place the camera behind it. We
also randomize the time of day, weather, color of the ego-vehicle,
and traffic around it through the 𝑒𝑎 and 𝑒𝑝 functions described in
Table 1. Through this process, we collect 50,000 anchor images to
train a ResNet18 encoder [5] over 20 epochs.

2.2 GameCLR (Our Approach)
Our work follows the literature [8] regarding synthesizing hard
negatives which can provide more information to the SimCLR loss
compared to regular negatives occurring through image augmen-
tation. Our approach, however, exploits access to a game engine
and thereby our ability to generate relevant images for learning
meaningful representations. Our assumption in this paper is that

Game State Learning via Game Scene Augmentation FDG ’22, September 5–8, 2022, Athens, Greece

Figure 2: Average cosine similarity of the anchor image and its positive and negative pairings in a training batch.

we can accurately describe the traffic around the ego-vehicle with-
out concern of changes in game aesthetics—such as car color—and
lighting conditions arising from changes in weather and day time.

Towards this end, we first render an anchor image by spawning
the ego-vehicle at a random location. Then, we change the weather,
time of the day conditions, or the color of the ego-vehicle while
the ego-vehicle remains at the same state, using the Game Scene-
preserving Augmentations 𝑒𝑝 (𝑆) listed in Table 1. We define all
such images as 𝑃𝑠𝑦𝑛 indicating the set of synthetic positives with
respect to the anchor image. Similarly, we synthesize negatives
(𝑁𝑠𝑦𝑛) by spawning random vehicles around our ego-vehicle. This
is done by performing Game Scene-altering augmentations 𝑒𝑎 (𝑆) in
addition to 𝑒𝑝 (𝑆). Figure 1 provides a few examples of the synthetic
and regular images for a given anchor image. Note that all these
images in GameCLR also undergo simple image augmentations
during training, similar to SimCLR. Thus, we can now compute
the GameCLR loss as L(𝑎, 𝑃𝑠𝑦𝑛, 𝑁 ∪ 𝑁𝑠𝑦𝑛) following the loss for-
mulation of SimCLR in Eq. (2). This framework is showcased in
Fig. 1 and we name it GameCLR. Our experiments for GameCLR
follow similar choice of training hyper-parameters used in SimCLR
as described in Section 2.1.

3 RESULTS
We present the results of our experiments with both augmentation
approaches as a two-part assessment. First, we analyze in Section
3.1 how the representations of game states change throughout
the learning process, especially focusing on the behavior of the
synthetic images used in GameCLR. Next, in Section 3.2 we focus
on highlighting the benefits of using such image representations
for applications to game research that require extracting game state
information from the game’s images.

3.1 Analyzing the Training Process
To investigate the role of different images encountered in a training
batch during the contrastive learning process in SimCLR, we start
by measuring the average cosine similarities between the positive
and negative pairs of image embeddings with respect to the anchor
images in a given training batch. Figure 2 (left) showcases those
measurements during the training process across 20 epochs. At the
beginning of training, both sets of positive and negative images have
similar cosine similarity to the anchor images. This implies that

the employed model before training cannot discriminate images
that are semantically similar to an anchor image from images that
are semantically different. As the training goes on, however, we
notice that the images that belong to positive sets are more closely
embedded to the anchor images compared to the images that belong
to the negative sets. This behavior indicates that the model learns
semantic similarities between images and embeds those semantics
into the produced high-level image representations.

For GameCLR, to evaluate the degree to which game scene aug-
mentation impacts the learning process, we measure the changes in
cosine similarities between synthetic positives, synthetic negatives
and regular negatives with respect to the anchor throughout train-
ing (see Fig. 2). We observe that all sets of images start at a similar
level of cosine similarity with the anchor, but as training advances,
synthetic negatives prove harder to contrast than regular nega-
tives. Since both negatives are included in the contrastive loss of Eq.
(1), the higher and more granular loss provides a more informative
learning signal to themodel. Interestingly, by the time the algorithm
converges, the model learns to distinguish synthetic negatives at a
similar level as that of regular negatives. This indicates that after
convergence the model is easily able to distinguish between the
distinct game states including the synthetic hard negatives.

This analysis shows the superior learning capability afforded by
the synthetic images obtained by directly modifying the pixels of
the image with the help of the game engine. In order to quantify
this benefit in terms of applicability to games research, we compare
the models trained by these two approaches based on post-training
evaluation, described in the following section.

3.2 Post-Training Evaluation
As proposed by Anand et al. [1], we evaluate how well the learned
representations have captured information relevant to the game
state through linear probing. Linear probing includes freezing the
weights of the ResNet encoder after the self-supervised training
is over (i.e. the contrastive loss has converged). Then, we train
linear regression models with the learned representations acting as
the predictor variables (input) and certain variables describing the
game state acting as the response variables (output). We measure
the performance of these regression models with the 𝑅2 correlation
metric, where higher correlation values suggest that the model has
better learned to identify the game state variables from the images.

FDG ’22, September 5–8, 2022, Athens, Greece Trivedi et al.

Table 2: Average 𝑅2 correlations between trained ResNet18
vectors and internal game state variables, averaged over 5
runs and shown along with 95% confidence intervals. Highest
average 𝑅2 values for each variable are highlighted in bold.

Traffic variables Untrained SimCLR GameCLR
Dist. (left vehicle) 0.31±0.006 0.50±0.006 0.60±0.010
Dir. (left vehicle) 0.35±0.013 0.53±0.009 0.56±0.008
Dist. (front vehicle) 0.33±0.013 0.58±0.010 0.70±0.014
Dir. (front vehicle) 0.37±0.016 0.53±0.010 0.57±0.007
Dist. (right vehicle) 0.39±0.008 0.65±0.010 0.69±0.005
Dir. (right vehicle) 0.40±0.015 0.60±0.014 0.65±0.009

We aim to test whether the derived representations of our mod-
els can describe the traffic around the ego-vehicle irrespective of
weather and lighting conditions. Therefore, we prepare an evalu-
ation dataset in CARLA by spawning an ego-vehicle at a random
location with a camera and collecting RGB images, and at the same
time collecting information about the coordinates and motion di-
rection of the vehicles surrounding this ego-vehicle, similar to [12].
We refer to these as traffic variables, as they can describe the state
of traffic around the ego-vehicle. For each frame in our dataset,
we collect a total of 6 synchronized traffic variables: Distance (left
vehicle), Direction (left vehicle), Distance (front vehicle), Direction
(front vehicle), Distance (right vehicle), Direction (right vehicle). Note
that we are able to find this ground truth of the traffic variables
due to direct access to the game engine of CARLA. Let us stress
that the traffic variables are not used during the training of our
contrastive models; they are only used as desired output for linear
probing after training is completed.

Table 2 presents the average correlation values observed for
each traffic variable in our evaluation dataset. We observe that both
methods—SimCLR and GameCLR—improve upon the baseline of
a randomly initialized ResNet18 model, verifying that contrastive
learning is an effective solution for learning to differentiate between
distinct game states. Across the six in-game variables, SimCLR pro-
vides a 157% improvement over the untrained baseline, on average,
whereas GameCLR provides an improvement of 174% on average.

Since contrastive learning is guided by engine-specific hard neg-
atives in GameCLR, the representations obtained by this method
outperform SimCLR by 11% on average on the linear probing task
while using the same amount of images and training steps. This
suggests that the ResNet18 encoder trained using the GameCLR
approach extracts more meaningful representations that better cap-
ture traffic information in the game image compared to SimCLR. All
𝑅2 values for the different in-game variables in GameCLR are signif-
icantly higher than SimCLR (𝑝 < 0.05), with the highest improve-
ment achieved for the distance to left vehicle (20% improvement
over SimCLR), and—surprisingly—the least improved 𝑅2 was for
the direction to the left vehicle (5.5% improvement over SimCLR).

4 CONCLUSION
In this paper we introduced GameCLR, a contrastive learning tech-
nique for learning game state representations. The main contri-
bution of this technique is the introduction of game engines for
synthesizing training images and enriching data augmentation in

this fashion. We notice that by synthesizing hard positives and
negatives for each associated anchor image, we can better guide the
contrastive learning process. Our results in the driving simulator
CARLA suggest a 11% average improvement (in terms of 𝑅2) when
extracting critical traffic-related game state features from images of
this game with our GameCLR approach over another comparable
approach (SimCLR). Our proposed method enables the user to con-
trol which visual features of a game the SSL method learns from the
input RGB images by specifyingwhich engine variables (that impact
rendering) produce synthetic positives andwhich produce synthetic
negatives. Moreover, it shows the performance improvement over
the standard contrastive learning approach SimCLR which uses
simple image-based augmentation methods and does not exploit
the game engine, as traditionally done when such computer vision
methods are applied to games. Our proposed method enables the
use of the game’s images as input instead of explicit state infor-
mation, with downstream applications in AI and games research
like deep reinforcement learning for game-playing, pixel-level pro-
cedural content generation or correlating affect with game-play
footage in player modeling.

ACKNOWLEDGMENTS
Chintan Trivedi, Antonios Liapis and Georgios N. Yannakakis were
supported by the European Union’s H2020 research and innovation
programme (Grant Agreement No. 951911). Konstantinos Makan-
tasis was supported by the European Union’s H2020 research and
innovation programme (Grant Agreement No. 101003397).

REFERENCES
[1] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté,

and R Devon Hjelm. 2019. Unsupervised state representation learning in Atari.
Advances in Neural Information Processing Systems 32 (2019).

[2] Matthew Barthet, Antonios Liapis, and Georgios N Yannakakis. 2021. Go-Blend
behavior and affect. In Proc. of the IEEE Intl. Conf. on Affective Computing and
Intelligent Interaction Workshops and Demos.

[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. 2019. DotA 2 with large scale deep reinforcement learning. arXiv:
1912.06680 (2019).

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Proc. of
the Intl. Conf. on Machine Learning. PMLR, 1597–1607.

[5] Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa
Ricci. 2022. Solo-learn: A library of self-supervised methods for visual represen-
tation learning. Journal of Machine Learning Research 23, 56 (2022).

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An open urban driving simulator. In Proc. of the Conf. on
Robot Learning. PMLR.

[7] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-
jee, and Fillia Makedon. 2021. A Survey on Contrastive Self-Supervised Learning.
Technologies 9, 1 (2021).

[8] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and
Diane Larlus. 2020. Hard negative mixing for contrastive learning. Advances in
Neural Information Processing Systems 33 (2020), 21798–21809.

[9] Mark J Nelson. 2021. Estimates for the branching factors of Atari games. In Proc.
of the IEEE Conf. on Games.

[10] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data
augmentation for deep learning. Big Data 6, 1 (2019).

[11] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. 2021. Decoupling
representation learning from reinforcement learning. In Proc. of the Intl. Conf. on
Machine Learning. PMLR, 9870–9879.

[12] Chintan Trivedi, Konstantinos Makantasis, Antonios Liapis, and Georgios N.
Yannakakis. 2022. Learning Task-Independent Game State Representations from
Unlabeled Images. In Proc. of the IEEE Conf. on Games.

[13] Georgios N Yannakakis and Julian Togelius. 2018. Artificial intelligence and games.
Springer.

	Abstract
	1 Introduction
	2 Methodology
	2.1 SimCLR
	2.2 GameCLR (Our Approach)

	3 Results
	3.1 Analyzing the Training Process
	3.2 Post-Training Evaluation

	4 Conclusion
	Acknowledgments
	References

