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Abstract. Variants of chess have been generated in many forms and for
several reasons, such as testbeds for artificial intelligence research in gen-
eral game playing. This paper uses the visual properties of chess pieces as
inspiration to generate new shapes for other chess-like games, targeting
specific visual properties which allude to the pieces’ in-game function.
The proposed method uses similarity measures in terms of pieces’ strate-
gic role and movement in a game to identify the new pieces’ closest
representatives in chess. Evolution then attempts to minimize the dis-
tance from chess pieces’ visual properties, resulting in new shapes which
combine one or more chess pieces’ visual identities. While experiments
in this paper focus on two chess-like games from previous publications,
the method can be used for broader generation of game visuals based on
functional similarities of components to known, popular games.

Keywords: Procedural Content Generation, Chess Variants, Digital Aes-
thetics, Evolutionary Algorithms, Simplified Boardgames

1 Introduction

For over a decade, digital games have been the domain of choice for research
in computational and artificial intelligence, culminating in several handbooks
on the topic [1, 2]. The vast majority of the research output on this domain
has been treating digital games as systems, focusing on their functional aspects.
Specifically, research in artificial agents for playing the game usually focuses on
their efficiency, using the game score attained as a benchmark of their success
[3]. On the other hand, research in procedural content generation (PCG) often
focuses on functional components of games, such as rules and levels, and assesses
them based on solvability in the sense that the game rules allow an end-state to
be attained [4] and a level’s goal to be reached [5].

An example of functional concerns of game research can be found in the
General Game Playing (GGP) domain for general-purpose agents [6, 7]. How-
ever, recent research on General Video Game AI [3] broadens this scope towards
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level generation [8, 9] and game rules generation [10]. This paper is inspired by
early GGP research on chess-like games [11, 12], approaching it using Simpli-
fied Boardgames [13]. As Pell’s generator for METAGAME was able to produce
game rules using randomized choices without any automatic evaluation [12], the
rule generator for Simplified Boardgames uses artificial evolution combined with
agent-based heuristics to ensure the strategic depth of generated games [14].

However, games are also aesthetic experiences that capture players’ attention
and allow for user interaction not only based on the combination of their rules
or the spatial arrangement of their levels. Digital games elicit players’ emotions
through a combination of audio, visual and gameplay stimuli, and motivate ex-
ploration of the game’s world by spreading visually stunning and unique vistas in
different locations. While game art has been generated algorithmically in a num-
ber of commercial games and research projects, it is not clear how the functional
components can be mapped to a specific audiovisual look and feel. As an ex-
ample, the Sonancia system [15] generates levels and then uses the components
within these levels (e.g. the presence or absence of monsters) to allocate back-
ground sounds in each room of the level. In the case of Sonancia, the mapping
is made on design assumptions that the presence of monsters leads to a more
tense experience; however, it is possible that such a mapping between different
elements of games can be learnt [16].

Even board games, which have a more limited physical medium, use visuals
to convey important gameplay affordances, e.g. the symbols in card games such
as Uno (Mattel, 1992) or the shape, size and color of house tokens in Monopoly
(Parker Bros., 1935). A systems-heavy board game such as chess also relies on
the shape and size of its pieces to denote their importance and function: the size
of the queen and king show that they are powerful pieces that should not be
placed in harm’s way (compared to the smaller, simpler pawn pieces).

Procedurally generated game rules thus require assets tailored to this par-
ticular game, so that they allow easy distinction between games created by the
same system, and better fit to this game’s style. For chess and chess-like games,
multiple human-made piece shapes already exist. These pieces can be used as
an inspiration set towards which new game pieces can be generated based on a
mapping between the visual appearance and the function of chess pieces.

In this paper, we present an evolutionary-based method of generating shapes
for any chess-like game, given its rules in Simplified Boardgames language. The
goal for the generator is two-fold. First, the shapes evolved for one game should
look similar, so that they are easily identified as parts of a whole. Second, we
would like the shapes of the pieces to correspond to their role and importance in
the game. Chess pieces are used as inspiration and their mapping between visual
and strategic properties is used to create the visuals of pieces in generated games.
This is done by finding similarities in the functional properties of chess pieces
and new pieces, and targeting the visual dimensions of the closest chess pieces for
evolving the shape of the new piece. Experiments in this paper focus on evolving
pieces for two procedurally generated games introduced in [14, 17].



2 Background Work

This section highlights relevant work on procedural content generation for games
and provides a brief description of the Simplified Boardgames language.

2.1 Procedural Content Generation

Digital games have used algorithms to generate content since the early 1980s
with games such as Rogue (Toy and Wichman, 1980) and ELITE (Acornsoft,
1984). Generating content procedurally has been primarily motivated within
commercial game development to increase replayability with nigh-endless varia-
tions of games and to decrease development time and cost. The game industry
has traditionally focused on generating levels such as the star systems of Stellaris
(Paradox, 2016), the gameworld of Minecraft (Mojang, 2011) or the dungeons
of Diablo (Blizzard, 1996). There has been a strong academic interest in pro-
cedural content generation (PCG) in the last decade, focused primarily in level
generation [18, 19, 5]. Contrary to the carefully scripted algorithms traditionally
used in commercial games, PCG research regularly uses complex artificial and
computational intelligence methods such as machine learning [19], declarative
programming [4] and artificial evolution [20].

While level generation has been the most popular domain for PCG in academia
and in commercial games, other facets of games such as visuals, audio, and game
rules have also been explored [21]. Relevant examples for this study include the
evolution of rulesets for colliding objects and scoring [22] or the evolution of
mechanics based on direct code modification [23]. For board games, board lay-
outs and rules have been evolved based on a broad range of metrics in the Ludi
system [24]. In our work, we are using the games generated by the evolutionary
system described in [14] for Simplified Boardgames. The system extends and
formalizes the idea of Relative Algorithm Performance Profiles (RAPP) [25] and
produces fully symmetrical games with one royal piece, and an initial row of
pawn-like pieces. The evaluation function uses a number of algorithms (player
profiles) with various degrees of intelligence. To assess the strategic properties
of a generated game, different AI algorithms are simulated against each other
and results are compared with the results obtained on human-made chess-like
games. Based on the RAPP assumption, we expect that all games that behave
similarly to human-made games will also be good. Results show that playable
and balanced games of good quality can be obtained in this fashion. However,
such games’ rules might not necessary be intuitive and easy to learn for human
players. For this reason, additional human-readability measures and generated
natural language descriptions of the game rules have been presented in [17].

Game visuals have often been evolved for different domains and with different
purposes. Game shaders have been evolved towards a designer-specified preva-
lent color [26]. The color and trajectory of particle effects representing players’
weapons have been evolved based on how often the weapon was fired compared
to others [27, 28]. Colorful flowers have been evolved collaboratively in a Face-
book game [29] based on the principles of interactive evolution [30]. In terms of



evolving shapes for use as game sprites, spaceships’ outlines have been evolved
towards breaking patterns found in previous evolutionary steps [31] as well as to
portray specific gameplay properties visually [32]. Inspired by cognitive psychol-
ogy, several fitness dimensions of shapes were defined in [33] and used to evolve
symmetrical shapes of spaceships’ hulls. Spaceships could be evolved based on
a weighted sum of these dimensions; the weights could be adapted to a user’s
choice among spaceships [33] or specified by a designer to create visual styles
for different alien races [34]. The visual metrics used in this paper are largely
inspired by the dimensions of [33], although in this case the goal is to minimize
distance with known chess shapes or combinations thereof.

2.2 Simplified Boardgames

Simplified Boardgames is the class of fairy chess-like games introduced by Björns-
son [13]. The language describes turn-based, two player, zero-sum chess-like
games on a rectangular board with piece movements described in regular lan-
guage and independent of move history. The language can describe many of
the fairy chess variants in a concise way, including games with asymmetry and
position-dependent moves. The usage of finite automata for describing pieces’
rules, and thus for move generation, allows fast and efficient computation of all
legal moves given a board setup. However, it has some important limitations, as
it cannot express actions like castling, en-passant, or promotions.

Here we follow formal specifications from [35] to provide a shortened neces-
sary introduction. A chess-like game is played between a black and white player;
the white player always moves first. During a single turn, a player has to make
a move using one of their pieces, changing its position according to the speci-
fied movement rule for this piece. At any time, at most one piece can occupy
a square: finishing the move on a square containing a piece (regardless of the
owner) results in removing it (capturing). No piece addition is possible. After
performing a move, the player gives control to the opponent.

For a given piece, the set of its legal moves is defined as the set of words
described by a regular expression over an alphabet Σ containing triplets (∆x,
∆y, on), where ∆x and ∆y are relative column/row distances, and on describes
the content type of the destination square, which can be empty, occupied by an
opponent piece, or occupied by an own piece.

Consider a piece and a word w ∈ Σ∗ that belongs to the language described
by the regular expression in the movement rule for this piece. Let w = a1a2 . . . ak,
where each ai = (∆xi, ∆yi, oni), and suppose that the piece stands on a square
〈x, y〉. Then, w describes a move of the piece, which is applicable in the current
board position if and only if, for every i such that 1 ≤ i ≤ k, the content condition
oni is fulfilled by the content of the square 〈x+

∑i
j=1∆xj , y +

∑i
j=1∆yj〉.

The game may end in a tie, when a preset turn limit is reached. The player
can win by moving a certain piece to a fixed set of squares (positional win), by
capturing a fixed amount of the opponent’s pieces of a certain type (capturing
win), or by bringing the opponent into a state with has no legal moves. The
terminal conditions may be asymmetric.



3 Methodology

The main task of our system is to read rules of an arbitrary chess-like game, and
produce the shape for each piece defined in this game. We decided to ground
our method on chess: the most famous boardgame in Western culture, and the
game where both the rules and the shapes are commonly recognized.

This section describes our system’s worflow, summarized in Figure 1. First,
the strategic and visual metrics for chess are computued; then, the strategic
metrics of a generated game are computed and pieces of this new game are
mapped onto chess pieces based on their similarity in strategic metrics. We use
that mapping to obtain target visual scores as an evolutionary objective. Two-
step evolution first generates a common base shape and then individually evolves
each piece starting from this base shape towards that shapes target visual scores.

To describe this full workflow, Section 3.1 first describes the strategic proper-
ties used and how we compute metrics for the most important aspects of pieces’
behavior. Similarly, Section 3.2 introduces visual metrics that capture the visual
style of a piece’s shape. Section 3.3 describes how we compare pieces in a new
game with those of chess, and how we find a mapping for their desired visual
metrics. Finally, we can evolve the shape of each piece in a new game. The pro-
posed algorithm operates in steps: first, a general shape is evolved based on the
average of all pieces’ visual metrics; then, the general shape is evolved further
to closely match each piece’s target visual metrics. Section 3.4 describes the ge-
netic encoding of a piece’s shape, while details of the evolutionary algorithm and
alternative approaches for choosing the final shapes are described in Section 3.5.

Apart from chess, experiments in this paper use two procedurally generated
games as a case study: The Legacy of Ibis described in [14], and the game pre-
sented in [17], which we refer to as The Weather Chess.

3.1 Strategic metrics

We identify several strategic metrics to describe a piece in terms of its role in the
strategic gameplay of chess: its importance, its movement (e.g. agile, bulky), its
usefulness in attack/defense, etc. This paper uses the following strategic metrics:

spo The fraction of the piece occurrences in the game’s initial state.
sec The fraction of piece movements that end with a capture.
spw This value is 1 if the piece can be used for a positional win, 0 otherwise.
scw This value is 1 if piece can be used for a capturing win, 0 otherwise.
sba The average ratio of the board area that can be covered by a piece from its

initial position(s).
smr The number of moves required to reach the most distant square from its

initial position(s).
slm The average number of legal moves for each reachable position on the board.
ssd The average shift distance for one letter, i.e.

√
∆x2 +∆y2.

sdd The average displacement distance for a word, i.e.
√

(
∑
∆x)2 + (

∑
∆y)2.



Fig. 1. Workflow of our system. After calculating strategic and visual metrics for chess
and a generated game, we map pieces of this game onto chess pieces based on their
strategic properties. Then, we use that mapping to obtain target visual scores as an ob-
jective. Two-step evolution first generates a common base shape and then individually
evolves each piece starting from this base shape.

These measures are chosen because: spo estimates the rarity of a piece; sec
assesses its aggressiveness; spw and scw define a piece’s importance in terms
of winning the game; sba, smr and slm describe a piece’s mobility; while ssd
and sdd are indicators of the piece’s movement style. Several other metrics were
considered, but were omitted due to redundancies with existing metrics which
would bias the similarity assessment for new games’ pieces.

Table 1 lists values of strategic metrics for all considered games. When en-
coding chess as a Simplified Boardgame, we use a slightly modified version: there
is no initial double pawn move, and —to compensate the lack of promotions—
a player can win by reaching the opponent’s back-rank with a pawn.

3.2 Visual metrics

We have defined four aspects that should be represented in visual metrics to
capture the most important aspects of piece shape: piece size, style of its enclosed
area (regardless of the size), style of its lines; and style of its angles. Inspired by
[34] and [33], we use the following metrics:

vw The ratio of the piece’s width to the width of the drawing area.



Table 1. Values of strategic metrics for each piece in considered games.

metric Chess The Legacy of Ibis [14] The Weather Chess [17]

p N B R Q K F m f ˜ l � � � � � �

spo 0.5 0.13 0.13 0.13 0.06 0.06 0.46 0.23 0.15 0.08 0.08 0.46 0.13 0.13 0.07 0.13 0.07
sec 0.66 0.5 0.5 0.5 0.5 0.5 0 0.25 0.5 0.6 0.5 0.5 0.75 0.5 0.5 0.75 0.66
spw 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
scw 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
sba 0.55 1 1 1 1 1 0.1 0.50 0.7 0.82 1 0.13 1 1 0.13 1 0.5
smr 6 5 2 2 2 7 2 4 6 4 7 6 5.5 10 4 8 7
slm 2.48 5.25 8.75 14 22.7 6.56 1.16 3.92 2.49 3.95 3.55 1.75 4.63 2.84 2.5 4.81 3.06
ssd 1.28 2.24 1.41 1 1.21 1.21 2.36 1.31 1.28 1.74 1.72 1 1.91 1.83 1.33 1.31 1.41
sdd 1.28 2.24 5.66 4 4.8 1.21 2.36 2.27 1.28 2.31 1.72 1 1.91 1.83 1.33 1.31 1.41

vh The ratio of the piece’s height to the height of the drawing area.
va The ratio of the piece’s area to the drawing area.
vta The ratio of the piece’s top 1/3 area to the piece’s area.
vma The ratio of the piece’s middle 1/3 area (on the x axis) to the piece’s area.
vs The intersection to union ratio between piece’s left half and the (mirrored)

right half; symmetrical shapes score 1 in this metric.
vmy The ratio of the piece’s middle half on the y axis to the piece’s area.
vtr The area intersecting the piece and an upward-pointing triangle shape, over

the piece’s area.
vp The ratio of the piece’s perimeter to double its bounding box perimeter.
vsl The ratio of the length of straight lines to the piece’s perimeter.
vsa The ratio of sharp angles (0◦–60◦) to all angles between lines.
vga The ratio of gentle angles (120◦–180◦) to all angles between lines.

Values in all metrics are bound to [0, 1]. Table 2 lists the visual metrics for
games in this paper. Values for chess were extracted from the set of shapes of
Fig. 2. Values for the other games were computed using the method described
in Section 3.3.

3.3 Mapping from general games to chess

As noted above, chess pieces have certain visual properties that denote their
function in game. New games, on the other hand, can be evaluated only in
terms of their function; finding what visuals these new pieces should have is

Fig. 2. The set of chess piece shapes used as a base for further computations.



Table 2. Values of visual metrics for each piece in considered games. Values for chess
are computed from the shapes in Figure 2. Values for the generated games are obtained
by our algorithm.

metric Chess The Legacy of Ibis [14] The Weather Chess [17]

p N B R Q K F m f ˜ l � � � � � �

vw 0.45 0.59 0.52 0.54 0.52 0.52 0.55 0.54 0.53 0.53 0.55 0.54 0.53 0.53 0.53 0.52 0.45
vh 0.52 0.8 0.82 0.63 0.90 0.98 0.81 0.63 0.83 0.77 0.83 0.63 0.76 0.75 0.78 0.98 0.53
va 0.12 0.29 0.18 0.19 0.20 0.26 0.23 0.19 0.23 0.20 0.24 0.19 0.20 0.19 0.20 0.26 0.12
vta 0.29 0.31 0.26 0.46 0.24 0.35 0.28 0.46 0.40 0.34 0.34 0.46 0.35 0.34 0.33 0.35 0.29
vma 0.28 0.31 0.29 0.18 0.29 0.25 0.30 0.18 0.22 0.24 0.26 0.18 0.23 0.25 0.24 0.25 0.29
vs 1 0.77 1 1 1 1 0.91 1 1 1 0.94 1 1 1 1 1 1
vmy 0.84 0.73 0.88 0.73 0.85 0.83 0.82 0.73 0.79 0.79 0.78 0.73 0.79 0.82 0.80 0.83 0.85
vtr 0.73 0.58 0.79 0.50 0.81 0.69 0.70 0.50 0.61 0.66 0.64 0.50 0.65 0.68 0.68 0.69 0.73
vp 0.41 0.43 0.43 0.45 0.49 0.47 0.44 0.45 0.46 0.47 0.46 0.45 0.47 0.44 0.47 0.47 0.41
vsl 0 0.04 0 0.29 0 0 0.02 0.29 0.12 0.14 0.08 0.29 0.15 0.11 0.12 0 0
vsa 0.22 0 0.15 0 0.27 0.40 0.09 0 0.23 0.14 0.16 0 0.13 0.09 0.15 0.40 0.22
vga 0.33 0.6 0.38 0.29 0.33 0.33 0.50 0.29 0.32 0.31 0.42 0.29 0.31 0.35 0.32 0.33 0.33

not straightforward. In this paper, we compare the functional properties of chess
pieces and new generated pieces, and approximate the visuals of these new pieces
based on the visuals of their closest chess pieces. Even with this basic premise,
a number of questions arise: (a) how is the functional similarity of pieces in
different games with different rulesets assessed? (b) can a generated piece be
similar to more than one chess pieces, and how is that handled? The following
paragraphs elaborate on the decisions taken to address these questions.

A broad range of functional properties have been described both qualita-
tively and in terms of heuristics for calculating them in Section 3.1. The most
straightforward way of assessing how closely a new generated piece matches an-
other is through an Euclidean distance treating the nine strategic features as a
9-dimensional vector. Comparing pieces in this fashion ignores the fact that the
pieces originate from different games, and are thus sensitive to the value ranges
of the other pieces in the same game. For example, a game in which most pieces
move to one or two adjacent spaces would classify all of its pieces as chess pawns
or kings, ignoring the fact that some pieces may be more mobile (e.g. moving
two spaces) than others (e.g. that move one space). Moreover, from a practical
perspective not all strategic metrics are in the same value range (e.g. smr and
ssd) nor do their values deviate from one piece to the other in the same way. To
address these concerns, pieces from both games are first standardized to their
z-scores, which processes a raw value x as z = (x − x̄)/σx where x̄ is the mean
value of all pieces in the same game and σx is the standard deviation of those
values. This standardization ensures all metrics are in the same value range and
clearly denotes outliers. In this way, more mobile pieces of one game will have
similar scores to more mobile pieces in the other game (compared to the average
mobility of each game) and thus would be mapped closer together.
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Fig. 3. Sensitivity of the chess piece mapping to different thresholds. The threshold is
the highest distance ratio of the closest chess piece that is considered. Results are on
average number of shapes combined and average pairwise visual distance; error bars
show the 95% confidence interval for 5 shapes and 10 distances in Legacy of Ibis, and
6 shapes and 15 distances in Weather Chess. Infinity uses all chess pieces.

Once the distance in terms of the nine standardized strategic metrics between
all pieces in the new game and all chess pieces is calculated, the closest chess
piece to each new piece is identified and its distance is compared to the distance
between other chess pieces and the new piece. Choosing the closest chess piece
and its visuals as the target of evolution is an option, but in practice two pieces of
a new game were often mapped to the same chess piece. Using all chess pieces’
visuals based on a weighted sum where weights are proportional to the chess
piece’s similarity to the new piece is another option. In practice, however, the
resulting target visual metrics were very similar for all pieces in the new game.An
intermediate solution was devised instead, considering only chess pieces which
are relatively close to the closest chess piece. This is done by dividing the distance
between the new piece and a chess piece with the distance to the closest chess
piece: the resulting metric Wi has a value range of (0, 1]: values close to 1 show
that a chess piece is almost as similar to the new piece as the closest chess piece.
Choosing an appropriate threshold, above which a piece is considered similar
enough, is an ad-hoc design decision which can affect the results. Based on a
preliminary sensitivity analysis (see Fig. 3), we chose to consider only pieces with
a strategic distance at most 160% that of the closest chess piece (Wi ≥0.625).
Each visual metric for a new piece amounts to a weighted sum of visual metrics
of all considered chess pieces, where the weight of chess piece i is a normalized
version of Wi so that all normalized weights sum up to 1. These normalized
weights for the two tested games are shown in Table 3.

3.4 Representation

Generated shapes are encoded in Scalable Vector Graphics (SVG) format, which
makes them directly useful for real applications. The genotype of every piece is
a series of lines (encoded in an array) that may contain straight lines, quadratic
Bézier curves and cubic Bézier curves. The starting point of every line (except



Table 3. Weight of chess pieces in terms of strategic similarity with pieces for the
Legacy of Ibis game (left) and The Weather Chess (right).

p N B R Q K

F 0.42 0.58

m 1.00

f 0.42 0.58

˜ 0.48 0.52

l 0.29 0.24 0.20 0.28

p N B R Q K

� 1.00
� 0.52 0.48
� 0.61 0.39
� 0.42 0.58
� 1.00
� 1.00

the first) is the end point of its predecessor, so it is omitted. The drawing area
has been set to 200× 200 units. The first point of every shape should be placed
on the lowest horizontal line. The first point is automatically connected to the
last point, closing the shape and making the piece’s basis. The line array is
interpreted differently for symmetric and asymmetric pieces. When a piece is
flagged as symmetric, we assume the array represents only the right half of
the piece, while the left half is mirrored. For asymmetric pieces, its genotype
explicitly contains all parts of the shape.

3.5 Evolution and its variants

A standard evolutionary algorithm scheme is used for evolving shapes. Tour-
nament selection chooses n/2 pairs of parents to crossover from the current
generation containing n individuals. Crossover produces two children, and each
of them can be additionally mutated. This may produce inconsistent individu-
als, which are removed from the population. The next generation is created by
choosing the best n shapes from the joint set of parents and children.

To encourage novelty, during selection any shapes similar to already selected
shapes are omitted. Similarity is computed as a fraction of the area of intersection
and the area of union of both pieces. Crossover cuts the array of parents’ lines
in half and joins both halves to create new shapes. If only one of the parents is
symmetric, its representation is temporarily changed to asymmetric.

The mutation operator is more complex: one possibility is that the piece is
converted to asymmetric. The other possibility is that one of its lines is chosen
at random and one of two operations is applied: (a) the line type is modified:
straight to arc, arc to double arc, double arc to straight, or a straight line to
be split in half into two straight lines; (b) the line’s points are transformed by
a random vector (including control points of Bézier curves which can affect the
shape without modifying the start and end points).

This paper proposes a two-step evolutionary algorithm: the first step evolves
deeply and widely a population towards the average of all pieces’ target values.
All pieces’ target values are averaged together on the same dimension; evolu-
tion targets similarity with those target (average) values as its fitness based on



the distance in a 12-dimensional vector for the 12 metrics of Section 3.2. Once
evolution is complete, the fittest individual is chosen and evolution is carried
out in a second step for each piece individually. The initial population for these
runs uses copies of the fittest individual of the first evolutionary step. Each run
targets similarity with the target values of that shape specifically as its fitness,
and evolves for a few generations. The fittest individual of each run in the sec-
ond step is chosen for that piece. To prevent shapes from being too similar, an
additional similarity check is made when choosing the best shape for each piece.

The second step can be radically simplified by choosing shapes diectly from
the final population of the first step described above. This makes the process
slightly faster, yet reduces the likelihood that chosen pieces will be visually
consistent with the desired ones. Additionally, in this case a similarity check is
required to prevent the same shape from being chosen for different pieces.

The last variant evolves each piece independently from the beginning, using
the similarity with that piece’s target values (see Table 2) as its fitness. This
method is the slowest and is likely to produce visually inconsistent shapes, but
is used for comparison with the other two approaches.

4 Results

To test how the three variants of our algorithm compare, we use each of them
to generate shapes for chess, The Legacy of Ibis, and The Weather Chess. In the
first case, we aim to recreate the exact chess aesthetic. For the remaining two
games, we create novel visuals based on our mapping method in Section 3.3.

In an initial exploration of the types of shapes produced by each method, we
used randomized parameter sets. The first evolutionary step was run in two uni-
formly distributed settings: deep (200–400 generations, population size 40–100)
or wide (50–200 generations, population size 200–500). For two-step evolution,
the second step ran for 1–10 generations. We have used three ways to initialize
the population: using copies of a triangle shape; using copies of chess pawns;
using random shapes. The best shape representatives of these runs were chosen
manually and presented in Fig. 4, covering most of the tested combinations of
variants and initial shapes for all games.

Based on the findings of the initial exploratory phase, most parameters of
the algorithms were chosen and finalized. To perform statistical comparisons
between approaches, games and initial shapes, however, 20 independent evolu-
tionary runs were performed on the same combination; their results are averaged
across methods and shapes or games. All runs evolve a population of 100 indi-
viduals over a total of 100 generations; for two-step evolution, these generations
were split between first and second step in several configurations, with 10, 20, or
50 generations dedicated to the second step (the first step respectively evolves
for 90, 80 and 50 generations). Fig. 5 shows the average values of the final cho-
sen pieces and the 95% confidence interval. Two relevant performance metrics
are tested: (a) as the objective of evolution, the Euclidean visual distance from
the target values of each piece (in Table 2); (b) as an indication of the visual



Exploratory results for Chess

Exploratory results for Legacy of Ibis

Exploratory results for The Weather Chess

Fig. 4. Example sets of evolved shapes for each game, initial shape (triangle, pawn,
random) and algorithm variant. Fitness values are presented below the shapes.

consistency of shapes of the same game, the average Euclidean visual distance
among all pairs in the same evolved set. With 6 pieces for chess and Weather
chess, and 5 pieces for Legacy of Ibis, each method had a total of 340 pieces (in
20 runs) for the same initial shape.

It is clear from Fig. 5 that each method behaves as expected: independent
evolution more closely matches the desired visuals of each piece but the resulting
pieces are very different from each other, while the opposite is true for one-step
evolution where shapes are picked from a final population of average shapes. Two-
step evolution finds itself in-between the two extremes, with more generations
dedicated to the second step leading to shapes closer to the desired visuals. Even
with a few generations for the second step, however, the divergence among pieces
in the same set is much higher (often double) than that of one-step evolution.
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Fig. 5. Sensitivity of the chess piece mapping to different thresholds. The threshold
is the highest distance ratio of the closest chess piece that is considered. Results are
collected from 20 runs per game, initial shape, and method; error bars show the 95%
confidence interval for 340 individuals for Fig. 5a and 60 runs for Fig. 5b.

In terms of initial shapes, clearly pawns are better starting points since they
are both more complex than triangle shapes and closer to the visual features
targeted by any chess variant than random shapes. Comparing across games, it
is surprising that chess shapes are more challenging to evolve for (in terms of
final distance to target values) than those of the two new games despite the fact
that its target values are derived directly from chess shapes.

5 Discussion

This paper describes a method for evolving shapes of chess-like pieces that be-
long to a number of previously generated games. Our approach maps the visual
aesthetics of chess pieces to their in-game function. This allows us to estimate
the intended visual aesthetics of new games’ pieces based on their role for this
particular game. A number of processing steps allow the system to identify pieces
that, while in raw values may e.g. move slower than some chess piece, they serve
a similar role in a game where generally all pieces move slower, for example.
Generated shapes are encoded in SVG, a popular vector graphics format, which
makes them easily scalable and useful for real applications.

The defined goal in this paper is to produce sets of shapes: a) which can be
distinguished as belonging to the same game, and b) where shapes of individual
pieces intuitively correspond to their role and importance in the game.

To satisfy the first goal, we use a two-step variant of the evolutionary algo-
rithm, as well as a variant one-step algorithm which picks pieces from a general
population. However, we observed that generated piece sets may contain too sim-
ilar pieces. Although our similarity tests remove the most obvious cases, many
cases may be sufficiently different in terms of area coverage but are still easily
mistaken by human players due to common visual details. The third algorithm



variant runs evolution independently for each piece and usually produces pieces
that are easier to distinguish and remember. Combined together, however, the
pieces do not look like parts of the same game and can be too easily swapped
with any other piece generated for other games. The balance between insuffi-
cient variability and too much variability is subjective, and results of the three
algorithms often explore the limits in one or the other end of the spectrum.

The degree to which the second goal is fulfilled is more disputable. Although
the chess-based grounding achieves its stated aim in some cases (e.g. often pieces
needed to win the game are bigger), it is hard to unambiguously decide what
style should characterize a piece given its rules. In the presented approach, the
mappings to chess pieces based on strategic similarities gives results that can
be justified. However, the process of evolution itself usually blurs all differences
that are not close to extremes. As with the first goal, further experimentation
on different similarity thresholds (e.g. in Fig. 3) can assess the tension between
having too many pieces map to the same chess piece versus combining too many
chess shapes in a way that makes the results indistinguishable.

This initial attempt at evolving shapes for games with procedurally generated
rules focuses on making them visually pleasing and playable. While currently not
all generated sets can be used immediately by players, a decent piece set can
always be chosen by a human judge. Future work will analyze and improve on
the strategic and visual metrics for a better mapping and a more concrete visual
identity, respectively. In terms of evolution, we intend to explore using novelty
search [36] —similarly to [34]— instead of the diversity preservation mechanisms
used in this paper. Finally, we plan to address the problem of identifying which
pieces are visibly consistent while being distinguishable. Towards that end, a
deep learning approach [31] could be useful for visual similarity assessment rather
than purely pixel-by-pixel operations currently used for diversity preservation.

This work, combined with past achievements in chess-like rule generation and
generated natural language descriptions of such rules [14, 17], can lead to a sys-
tem that can generate, on demand, games together with their rule explanations
and their full visuals. Playing games offered by such a system will be a human
equivalent of the General Game Playing challenge.

6 Conclusion

This paper proposed a way of generating the shapes of pieces in unseen, gener-
ated games based on their functional similarities with pieces in known, popular
games. Focusing on several generated chess-like games and the original chess,
experiments explored whether generated shapes could achieve a consistent look
(as pieces of the same game) while allowing players to distinguish between pieces
for actual play. Results indicate that depending on whether pieces were evolved
as a whole (for one game) or independently, the balance between these two goals
can be skewed towards one or the other. This first generative attempt can be
strengthened algorithmically in order to better achieve both goals at the same



time. Future work could also explore the use of similar techniques for other
games, including other board games or even digital games.
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