
Neuroevolutionary Constrained Optimization for Content Creation

Antonios Liapis, Georgios N. Yannakakis, Member, IEEE and Julian Togelius, Member, IEEE

Abstract— This paper presents a constraint-based procedural
content generation (PCG) framework used for the creation of
novel and high-performing content. Specifically, we examine
the efficiency of the framework for the creation of spaceship
design (hull shape and spaceship attributes such as weapon and
thruster types and topologies) independently of game physics
and steering strategies. According to the proposed framework,
the designer picks a set of requirements for the spaceship
that a constrained optimizer attempts to satisfy. The constraint
satisfaction approach followed is based on neuroevolution;
Compositional Pattern-Producing Networks (CPPNs) which
represent the spaceship’s design are trained via a constraint-
based evolutionary algorithm. Results obtained in a number
of evolutionary runs using a set of constraints and objectives
show that the generated spaceships perform well in movement,
combat and survival tasks and are also visually appealing.

I. INTRODUCTION

Design and production of game content is amongst the
most costly and labor intensive parts of the game de-
velopment process. The creation of content supported by
algorithmic means may help to overcome the content creation
bottleneck while also allowing for novel content to be gener-
ated and tested faster, game replayability to be increased and
design efforts to be pushed to the limits of human creativity.
However, the utility of content for a particular game and a
specific player is far from obvious if content is not linked to
computational models of player experience and if efficient
search algorithms are not generating the required novelty.

Inspired by the experience-driven procedural content gen-
eration (EDPCG) framework of Yannakakis and Togelius [1]
we propose a search-based constrained optimization PCG
[2] approach to spaceship design, in particular hull shape
design and weapon/thruster topology design. The paper intro-
duces a generic framework which optimizes a spaceship for
movement, combat and survival competencies given a set of
design requirements, a physics simulator of a particular game
engine and a set of steering behaviors. The PCG approach
proposed evolves Compositional Pattern-Producing Networks
(CPPNs) [3] via the Feasible-Infeasible Two-Population (FI-
2Pop) [4] genetic algorithm which yields a neuroevolutionary
constraint satisfaction algorithm.

Results obtained through the study presented in this pa-
per suggest that the proposed framework is able to design
spaceships that achieve high performance in terms of combat,
movement and survival. While ad-hoc designed solutions
are performing well, evolution of spaceships allows for
adaptivity and offers more flexibility and creativity in content
design. The evolved spaceships are not only able to perform

Authors are with the Center for Computer Games Research, IT University
of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark.
Emails: {anli, yannakakis, juto}@itu.dk

well in certain tasks but they are also aesthetically pleasing
with unexpected and intriguing shapes.

The paper is novel in various aspects of computational
intelligence and games (CIG) research: it is the first time that
a PCG framework is proposed for the creation of content
for highly-performing game agents which is independent
of physics and motion strategy; it is the also first time
PCG is proposed for spaceship design and the first time
that CPPNs are combined with FI-2Pop to solve constraint
satisfaction problems (for PCG and beyond). While the
presented framework is inspired by the Galactic Arms Race
game [10], it is distinct in that it evolves the spaceships
themselves rather than their weapons, controls the generative
process through constraints and substitutes the evaluation of
content by players (i.e. interactive fitness) with an evaluation
of performance during in-game simulations (i.e. simulation-
based fitness).

II. RELATED WORK

During the short history of digital game development,
procedural content creation has mainly been used for the
design of maps, terrains and levels (e.g. in games such as
Rogue, Elite and Civilization), though there are examples of
item generation such as the recent Borderlands. In recent
years PCG has gained increased attention from the research
community, focusing more on new ways of generating,
evaluating and optimizing content.

Search-based Procedural Content Generation (SBPCG), is
a special case of the generate-and-test approach to PCG [2]
in which the generated content is not simply accepted or
rejected but assigned a fitness value guiding the generative
process towards new content with higher fitness. Genetic
algorithms are ideal candidates for most search-based op-
timization problems and have been the tool of choice for the
majority of SBPCG studies, which range from the generation
of game levels [5], [6], [7] and maps [8], [9] to weapon
projectiles [10] and game rules [11], [12].

The evaluation of content through simulations (simulation-
based PCG) has recently seen several implementations. To-
gelius et al. [6] estimate the fitness of a track based on
the performance of a steering controller modeled after a
particular player’s driving style. Browne [11] estimates the
fitness of evolved board layouts and rules based on numerous
aesthetic measurements gathered during a number of self-
play simulations. Togelius and Schmidhuber [12] estimate
the fitness of a set of game rules based on the game’s
learnability.

While constraint-based PCG has been implemented in
[13], the proposed method is innovative in that a neuroevolu-
tionary approach is employed for constrained optimization of



content. Additionally, while CPPNs have been implemented
for evolving agent-based content for the Galactic Arms Race
game [10], this paper diverges from the approach taken in
that game by ensuring (via hard constraints) that the content
is functional but also of sufficient quality before making
it available to the player. Unlike the Galactic Arms Race
game, content quality in this framework is not assessed
by the players, but by metrics gathered during actual in-
game simulations testing for a plethora of the spaceships’
competences.

III. NEUROEVOLUTIONARY CONSTRAINED
OPTIMIZATION

This section presents the two main components of the
neuroevolutionary constrained optimization algorithm used
for the purposes of this study.

A. CPPN-NEAT

Introduced by Stanley [3], Compositional Pattern-
Producing Networks (CPPNs) are neural networks specif-
ically designed to represent content with regularities, and
which are capable of being optimized through artificial evolu-
tion. Assuming that development in nature consists of a series
of progressively more localized coordinate frames (where a
coordinate is a “conceptual device for describing an abstract
configuration of any type” [3]), Stanley argues that devel-
opment is analogous to a series of function compositions
which transform the base coordinate frame to increasingly
more localized coordinate frames with each transformation
applied. This sequence of function compositions can be
represented as a connected graph of such functions, with
the initial coordinate frame as input and the most localized
coordinate frames as output.

CPPNs can be optimized via neuroevolution of augment-
ing topologies (NEAT) [14]. NEAT starts evolution with a
uniform population of CPPNs with the simplest topology (no
hidden nodes) and random connection weights. As evolution
progresses, more hidden nodes and links are added to the
CPPNs; when a node is first added to the network, its
activation function is selected randomly from a range of
pattern producing functions (such as symmetrical or periodic
functions). Genetic diversity is maintained through speci-
ation, with individuals competing primarily with members
of their own species, allowing them to optimize their struc-
ture without being overwhelmed by individuals of different
species with more complex (and possibly more optimal)
topologies.

B. FI-2Pop

While genetic algorithms have shown great promise in
the domain of function optimization [15], the difficulties
they face in solving constrained numerical optimization prob-
lems [16] has given rise to many different methods for han-
dling such problems. The Feasible-Infeasible Two-Population
(FI-2Pop) genetic algorithm [4] is a recent approach to
constrained optimization through artificial evolution, its prin-
ciple being the maintenance (throughout the execution of the

algorithm) of two populations — one containing only feasible
individuals and the other containing only infeasible. Each
population selects and breeds only among its own members
in order to optimize its fitness function, with each population
having a different evaluation strategy.

While the feasible population conducts its optimization
in much the same way as in an unconstrained problem,
the objective function of the infeasible population shifts the
latter towards the boundary of feasible space, where the
optimum solution often lies [16]. The proximity of infeasible
individuals to the boundary of feasible space increases their
chances of producing feasible offspring. The offspring of
both generations are tested for constraint satisfaction, with
infeasible offspring (regardless of whether their parents were
feasible or infeasible) being inserted into the infeasible
population and feasible offspring being inserted into the
feasible population. This migration of offspring from one
population to the other (an indirect form of inter-breeding)
contributes to the variation of both populations; depending
on the size of the feasible set, this migration may be the only
source for feasible individuals.

The algorithm proposed in this paper evolves CPPNs
via FI-2Pop yielding a constrained optimization approach
through neuroevolution.

IV. METHODOLOGY

The type of game content evaluated and optimized is a
single two-dimensional polygon representing the hull of a
spaceship, including weapons or thrusters attached to the
edges of the spaceship’s hull. The spaceship must fulfill
some minimum requirements, and is evaluated based on its
performance in a series of simulations of typical shooter
game circumstances. This section presents the process of the
spaceship’s generation and its evaluation.

A. Representation

The patterns in the spaceships’ hulls are represented via
a CPPN (see Fig. 1). The CPPN receives a sequence of
inputs in the form of 2D coordinates (corresponding to 64
equidistant points on a circle) and returns a sequence of
outputs corresponding to the points of the spaceship hull’s
pattern. Each output vector consist of the 2D coordinates X
and Y of each point and a γ value which indicates if the point
has a weapon or thruster attached. This sequence of outputs
is translated into the spaceship’s hull coordinates as well as
specific weapon and thruster types according to a collection
of game-specific parameters. These game parameters include
a collection of weapon types and thruster types and constants
such as mass per surface unit and maximum width and height
of a spaceship (see (c) in Fig. 1). An output vector’s X and
Y values are used directly as the coordinates of the corre-
sponding point on the spaceship’s hull while the continuous
γ value is translated into different categorical weapon types
and thruster types (each with their own parameters such as
cost, thruster power, weapon cooldown or projectile damage).
If γ < −0.7 then the point has a thruster attachment, the
type of which depends on the value range each thruster is



Fig. 1. Generation of a spaceship (e) from the input circle (a), the CPPN
(b) and the game parameters (c). The red element represents a weapon (type
Laser) and the two blue elements represent thrusters of different types.

assigned within [−1,−0.7). If γ > 0.7 then the point has a
weapon attachment, the type of which depends on the value
range each thruster is assigned within (0.7, 1]. For all other
γ values the point has no attachment.

Once the spaceship has been generated from the se-
quence of outputs of the CPPN, its physical properties
are determined based on its surface area, its centroid and
the alignment of thrusters with regards to it. The physical
properties determined this way include the spaceship’s mass,
its thrusters’ force and torque (caused by thrusters misaligned
with the centroid). The spaceships’ physics model is elabo-
rate and allows for speed and acceleration to have different
directions and enabling momentum.

B. Constraint satisfaction

Spaceships must fulfill some minimum requirements
which are linked to the graphics engine, the physics sim-
ulation or the game environment. Constraints can also be

Fig. 2. A screenshot of a rendered simulation, showing all the available
components. Depicted are the procedurally-generated tested spaceship (yel-
low), an enemy spaceship (red) loaded from a library of predetermined
designs, two planets acting as obstacles (the two spheres) and the goal area
(white) towards which the test spaceship is moving.

imposed on performance by the designer, such as a maximum
time required to complete a task. A set of hard constraints is
checked before the spaceship is evaluated via game test sim-
ulations for performance; game test simulations are skipped
if those constraints are violated. Such hard constraints arise
from the needs of rendering physics simulations (such as
a non-degenerate polygon and positive mass), from the
need of a spaceship appearing “plausible” to the user (such
as weapons and thrusters that do not intersect with each
other) and from the game design itself (which can impose a
maximum number of weapons and thrusters, or a maximum
speed). In addition, some game test simulations constitute
additional hard constraints (e.g. maximum time to complete
or maximum deaths).

Given the game- or author-imposed requirements the prob-
lem of spaceship design is clearly one of constrained op-
timization. The Feasible-Infeasible Two-Population genetic
algorithm (presented in section III-B) is capable of handling
such a problem by maintaining both a feasible and an
infeasible population. The feasible population consists of
individuals corresponding to spaceships which fulfill all the
constraints, and strives to maximize its members’ fitness
in a set of game simulations (detailed in section IV-C).
On the other hand, the infeasible population consists of
individuals corresponding to spaceships which violate one
or more constraints, and strives to minimize its members’
distance from feasibility which is calculated as a sum of
each constraint’s distance from the feasible solution. While
some constraints have a scalar distance from feasibility (e.g.
number of degenerate segments) other constraints have a
boolean distance from feasibility (e.g. simulation-dependent
constraints can be either passed or failed). The fitness
score of the infeasible population is inversely proportional
to the total distance from feasibility, providing sufficient
bias towards individuals which only fail a small number of
constraints.

C. Evaluation of performance

Spaceships must be able to perform the tasks as those
are imposed by the game designer, ideally in the most



efficient fashion. The performance of spaceships is evaluated
based on their behavior in a series of simulations of typical
game situations. A simulation takes place in an infinite 2D
world consisting of goals, planets (acting as obstacles) and
spaceships (see Fig. 2). Apart from the tested spaceship, each
simulation identifies the number and properties of allied and
enemy spaceships as well as the steering strategy applied
to their controllers. The steering controller may combine nu-
merous steering behaviors such as seek, arrive, target, target-
approach, avoid, and flee. Inspired by Reynolds’ steering
behaviors [17], the steering controller accounts for the space-
ships’ elaborate physics model (with momentum, misaligned
thrusters and the aiming conditions of diverse weapon types).
The steering behaviors are designed so that most generated
spaceships can be controlled, but may be more suited to
specific spaceship setups; performance optimization aims to
discover spaceship designs which benefit the most from the
given steering controller and physics model.

The simulations test the ability of a spaceship to reach
a goal (with or without obstacles along its path) or destroy
enemy spaceships. When the winning condition of a simula-
tion is satisfied, the performance of the spaceship is assessed
based on in-game statistics (metrics) gathered during the
simulation. Each test yields a test score T and assesses one
(or more) of the three following competencies: movement,
combat and survival. The test scores of the various simulation
tests are aggregated into a sum normalized to [0, 1] which
represents the fitness value of feasible individuals. The fitness
function, f , is calculated as:

f =

∑N
i=1 Ti∑N
i=1Mi

where N is the number of different simulation tests (7 in this
paper); Ti is the test score for the i-th test and Mi a constant
equal to the maximum possible test score for the i-th test.
The proposed normalization gives those performance tests
with more gathered metrics a higher impact on the fitness
score than simpler tests, which have fewer metrics.

The simulations used to assess performance in this paper
are presented below along with a type for their test scores.
Since many simulations share the same performance metrics,
any variable name in the following types has the same
definition as in the first type where it was presented.

1) Movement: A basic speed test consisting of the test
spaceship and a goal area, which measures the effi-
ciency with which the spaceship reaches the goal. Its
test score is:

T1 =
d

t · Smax
+
dstart
d

where d is the trail distance (the total distance between
consecutive positions of the test spaceship); Smax is
the maximum allowed speed; t is the simulation’s
duration; and dstart is the shortest distance between
the spaceship’s starting position and the goal. M1 = 2.

2) Movement: A basic collision test consisting of the
test spaceship, a goal area and a planet between the

two, which measures the efficiency with which the
spaceship reaches the goal while avoiding collisions.
Its test score is:

T2 = T1 +
tc
t

where tc is the total duration that a spaceship was
colliding with an obstacle. M2 = 3.

3) Movement: A complex collision test including the test
spaceship, a goal area and five planets scattered around
the path between the spaceship and the goal. This
test measures the efficiency with which the spaceship
reaches the goal while avoiding collisions in a more
complex environment. Its test score is:

T3 = T2 +
dstart
dend

where dend is the distance between the spaceship’s
final position and the goal. M3 = 4.

4) Combat: A basic shooting test consisting of the test
spaceship and an immobile enemy spaceship without
thrusters or weapons. This test measures the efficiency
with which the spaceship destroys the enemy, and its
test score is:

T4 =
De

tco ·Dmax ·Wmax
+
De

Ds

where De is the amount of damage inflicted to enemy
spaceships; tco is the duration of the combat; Dmax is
the highest damage per unit of time among all possible
weapons; Wmax is the maximum number of weapons
allowed on a spaceship; and Ds is the total damage of
shots fired from the test spaceship. M4 = 2.

5) Movement and Combat: A chasing test consisting
of the test spaceship and a fleeing enemy spaceship
without weapons, which measures the efficiency with
which the spaceship can reach the enemy and destroy
it. Its test score is:

T5 = T4 +
d

t · Smax
+
De

He

where He is the enemy’s initial health points. M5 = 4.
6) Movement and Combat: A chasing test as (5) but

with a faster enemy spaceship. Its test score T6 is
calculated as T5 and M6 =M5.

7) Movement, Combat and Survival: A shooting test
which includes the test spaceship and an enemy space-
ship with weapons and thrusters and with the same
behavior as the test spaceship (moving towards and
shooting its enemies while avoiding collisions with
them). This test measures the efficiency with which
the spaceship can destroy an aggressive, competitive
enemy.

T7 = T4 +
De

He
+
sr
sf

where sr and sf are the number of shots received by
the test spaceship and fired by the enemy, respectively.
M7 = 4.



Fig. 3. Ad-hoc baseline solutions for spaceship performance: a triangle, a
square and a circle. Blue elements depict thrusters while yellow elements
depict weapons. The surface of each spaceship’s hull corresponds to a mass
that, with the given thrusters, can reach a speed equal to the maximum speed
allowed by the game environment.

TABLE I
FITNESS OF THE THREE BASELINE SOLUTIONS

Tests used to calculate fitness Square Triangle Circle
Tests 1 to 3 (M test cluster) 0.9236 0.9294 0.9330
Tests 1 to 6 (M/C test cluster) 0.7333 0.7383 0.7461
Tests 1 to 7 (M/C/S test cluster) 0.7288 0.7320 0.7385

Combining all of the above simulation tests allows for
most functionalities expected from a spaceship in a spaceship
combat game to be evaluated; the cluster of tests 1 to 7 is
labeled M/C/S test cluster. By using the tests described under
(1), (2) and (3), evolution optimizes only the spaceships’
competency at movement (focusing on speed and maneuver-
ability), rendering the presence of weapons unnecessary; the
cluster of tests 1 to 3 is the M test cluster. Combining all
tests except (7), evolution disregards the spaceships’ survival,
focusing on movement and combat efficiency; the cluster of
tests 1 to 6 is the M/C test cluster.

V. EXPERIMENTS

This section presents a set of ad-hoc designed baseline
solutions to the chosen tests and concludes with experiments
of neuroevolutionary constrained optimization.

A. Baseline Solutions

Some obvious ad-hoc baseline solutions to spaceship de-
sign include a triangle, a circle and a rectangle as shown in
Fig. 3. Those three designs are used for comparative purposes
against our approach. The hulls’ dimensions are chosen so
that the maximum speed (which constitutes a game-specific
constraint) can be reached with the given thrusters. Since
speed is a major contributor of performance in most of the
simulation tests described in section IV-C, it is expected that
spaceships on the edge of feasibility with regards to the speed
constraint will have very high fitness scores.

Table I shows the fitness value of the three ad-hoc shapes
for the three different clusters of simulation tests described in
section IV-C. As expected, the fact that all ad-hoc solutions
have similar hull areas (and therefore similar mass and
maximum speeds) results in similar fitness values regardless
of the shape of the spaceship; any fitness difference can be
accounted to the difference in the distance of weapons from
each other and slight disparities in mass due to rounding.

B. Neuroevolutionary Spaceship Design

The generative process for spaceships through a CPPN, as
detailed in Section IV-A, allows for any number of weapons

and thrusters to be attached to a spaceship’s hull. For the
purposes of comparing the baseline solutions with evolved
spaceships, the number and types of weapons and thrusters
are predefined as part of the CPPN’s inputs, and the γ output
is disregarded — the weapons and thrusters of generated
spaceships are the same (both in number and type) as those
used for the baseline solutions of Fig. 3. This predefined
representation has a more limited search space than the one
presented in Section IV-A, but also manages to generate
spaceships that always satisfy numerous constraints detailed
in Section IV-B. This results in a large feasible set with
regards to the search space, increasing the likelihood of
feasible offspring from both feasible and infeasible parents.

1) Predefined representation: After 200 generations of
the CPPN-FI-2Pop algorithm using a fitness calculated on
all the simulations (M/C/S test cluster), the fittest spaceship
generated by this predefined representation has a mean fitness
of 0.7284 (stdev is 0.0063) in 5 individual runs. The fittest
spaceship throughout these runs has a fitness value of 0.7384.
When this spaceship is tested only on the M test cluster
or the M/C test cluster, its fitness is 0.9121 and 0.7303,
respectively.

The optimized spaceship’s fitness values are very close
to those of the ad-hoc solutions; evolution manages to find
individuals on the edge of the feasible space, achieving a
speed very close to the maximum allowed. The fact that the
number and types of weapons and thrusters are predefined
ensures to a large extent that the generated individuals will
be feasible (and therefore able to complete all simulations)
but also narrows the spaceships’ performance to a limited
value range (with boundaries on both the minimum and
the maximum performance). Section V-B.2 will illustrate
that allowing for different weapon and thruster topologies
in the same population allows for a larger search space and
ultimately higher fitness values than the ones presented here.

Fig. 4 illustrates the progress of the best individual’s fitness
throughout the optimization process, broken down by the
contributing competencies in different types of test levels
(as identified in section section IV-C). the figure also shows
the phenotypes of the best individual on different stages
of evolution (every 40 generations). Since most simulations
evaluate Movement or Movement and Combat, they have the
highest contributions to the fitness score. The figure shows
that the population includes highly fit individuals even in the
initial population. Within the first 40 generations, the best
individual changes often, mostly increasing the movement
composite of performance — around the 40th generation
the movement composite has reached its maximum value
with the given constraint on maximum speed. After the
first 40 generations the best individual changes only in
three instances, mostly increasing its competency in the
Movement, Combat and Survival simulation. The final best
individual does not have a very different fitness value from
those in early stages of evolution.

2) Standard representation: Using the standard represen-
tation as detailed in section IV-A, the generated spaceships



Fig. 4. Stacked area plot of the performance optimization on all simulations
(the M/C/S test cluster) using the predefined representation. The session
has a total population of 500 individuals. In the phenotypes shown, blue
and yellow elements depict thrusters and weapons, respectively.

may have any number of thrusters and weapons. The number
of thrusters cannot increase the speed of the spaceship, which
is constrained to a maximum, but the number of weapons can
increase the combat efficiency of the generated spaceships
over that of the ad-hoc shapes of Fig. 3.

Given the freedom of this representation with regards to
attached weapons and thrusters, the search space is very
large, while the numerous constraints on the maximum
number of weapons and thrusters, the maximum speed and
the requirements of the individual simulations result in a
small feasible set. This greatly affects the number of feasible
individuals, since neither feasible nor infeasible parents are
likely to generate feasible offspring; the resulting small
feasible population hinders the optimization of performance.
The fitness values of the best evolved individuals, averaged
across 5 individual runs, are displayed in Table II. When
optimizing only for the movement competency (the M test
cluster), the best optimized individual among these runs has
a slightly higher fitness than that of the baseline solutions
of Table I — the constraint on maximum speed does not
permit significantly higher performance. When combat (or
combat and survival) is included in the fitness score, the best
optimized individual has much higher fitness than the base-
line solutions, since the weapon topology plays a significant
role in the targeting behavior and the combat efficiency of
the spaceship. Since the standard representation can generate
spaceships with a larger number of weapons than the baseline
solutions, the comparison between them is not entirely fair.
However, the challenge a human designer faces at guessing
such an optimal weapon topology supports the simulation-
based optimization approach.

The progress of the best individuals’ fitness throughout
the optimization process in each of the three different test
clusters is shown in Fig. 5. Where applicable, these figures
illustrate the progress of the best individual’s contribut-
ing competencies in different types of test simulations (as

TABLE II
STANDARD REPRESENTATION: FITNESS OF THE BEST EVOLVED

INDIVIDUALS AFTER 200 GENERATIONS OUT OF 5 DIFFERENT RUNS

Tests used to calculate fitness Mean St. Dev. Max
Tests 1 to 3 (M test cluster) 0.9321 0.0043 0.9367
Tests 1 to 6 (M/C test cluster) 0.8023 0.0086 0.8147
Tests 1 to 7 (M/C/S test cluster) 0.7117 0.0930 0.7986

identified in section section IV-C). Under each figure, the
phenotypes of the best individual on different stages of
evolution are shown; the first phenotype always corresponds
to the first feasible individual in the population, while the
other phenotypes are chosen on a 40 generation interval.

When optimizing only the movement competency (the M
test cluster), it should come as no surprise that the phenotypes
do not have any weapons, since those are unnecessary for
completing the provided simulations. Fig. 5(a) illustrates
how the large first feasible spaceship is quickly optimized
to a leaner, lighter one. Within the first 30 generations
after the first feasible spaceship, the best individual has
managed to achieve a high fitness score; in the remaining
generations only small changes occur in the phenotypes
favoring small and compact spaceship hulls to minimize
torque and the likelihood of collisions. With the inclusion
of combat (see Fig. 5(b)) the discovery of the first feasible
individual in the population becomes more onerous, since
it requires the presence of both weapons and thrusters in
the corresponding spaceship. The first feasible spaceships
are large and slow, and are quickly optimized to increase
the movement composite of the fitness by reducing their
hull’s surface. Not surprisingly, the best individual optimized
on the grounds of movement, combat and survival (see
Fig. 5(c)) changes often, as it juggles between many different
(even conflicting) types of test simulations; the balance of
contributions from different tests in the best individual’s
fitness score changes from one generation to the next. The
final best spaceship design is rather unexpected and peculiar.
The evolutionary algorithm manages to generate a bizarre
hull geometry which permits a thruster to be placed at the
front area of the spaceship while a weapon is placed at
the bottom area. Given that this peculiar spaceship performs
better than the baseline solutions while possessing half the
number of weapons and half the number of thrusters (the type
of weapons and thrusters are common between the baseline
and the optimized solution) indicates that counter-intuitive
designs can take better advantage of the steering controller
and the physics system than predicted optimal designs.

A quick look at the phenotypes of Fig. 4 and Fig. 5 illus-
trates that search-based optimization can create spaceships
of similar or higher fitness than the fitness of hand-crafted
solutions. The effort required to reach such fitness values
by evolving spaceships seems unnecessary, considering how
easy an obvious ad-hoc design solution can be determined;
however, these hand-crafted solutions assume prior knowl-
edge of both the test levels and the constraints imposed.
Many constraints and straightforward simulations (such as



(a) Optimization on tests 1 to 3 (M test cluster)

(b) Optimization on tests 1 to 6 (M/C test cluster)

(c) Optimization on tests 1 to 7 (M/C/S test cluster)

Fig. 5. Stacked area plots of the performance optimization process, using
the standard representation. Each session has a total population of 500
individuals. In the phenotypes shown, blue elements represent thrusters,
while yellow and red elements represent different weapon types.

those involving only movement) may have optimal solutions
which are immediately obvious to a human designer. How-
ever, given the complex steering controller and the physics
model used for the spaceships’ locomotion, the spaceships’
behavior in many simulations is far from obvious.

Neuroevolutionary constraint satisfaction via CPPN-FI-
2Pop treats all constraints and all simulations equally: it
may require disproportional computational effort to identify
optimal spaceships in cases where one is immediately ob-
vious, but can also find optimal spaceships in cases where
one is not obvious. Additionally, evolution manages to find
spaceships whose hull has more “interesting” shapes than
a triangle, a circle or a square. While an “interesting” hull
shape does not affect the spaceship’s performance, it opens
up the potential of evolving spaceships both on the grounds
of their performance in simulations and on the grounds of
visual appeal.

VI. DISCUSSION

This paper provides a constraint satisfaction PCG frame-
work used to optimize the shape and weapon/thruster topol-
ogy of spaceships based on actual game simulations. While
obvious solutions may be determined by a human designer
for clear-cut tasks, the framework is generic across any
game physics model and steering strategy allowing it to
find optimal or near-optimal spaceships even in cases where
such are not obvious a priori. Moreover, the evolutionary
process opens the possibilities for optimizing the shape of
spaceships not only for performance, but also for visual
appeal. By quantifying aesthetic qualities such as symmetry,
weight distribution and alignment, the optimization process
can create content of high performance incorporating specific
visual patterns. That would allow the adaptation of content
to a player’s individual aesthetic preferences and visual taste
while ensuring that it remains both viable (able to perform
its required tasks) and of high competitiveness. The process
of identifying and quantifying important aesthetic qualities
of a spaceship and their optimization process — as well as
the specifics for adapting such qualities to a player — is
considered for future work.

It should be noted that, while in the current context the
framework proposed incorporates a tool for both evaluating
and optimizing content, it can also be used solely as a
tool for evaluating performance: the spaceships evaluated
can be evolved (as those appearing in Table II) or hand-
crafted (as those appearing in Table I). The benefit of
such a tool is that it gives each tested spaceship a score
indicative of the required competencies as stated (implicitly)
by a human designer. Adjusting an existing simulation or
adding a new one is as easy as editing a short XML file,
and requires minimal knowledge of the inner workings of
the evaluation tool; this allows even game developers with
minimal programming skills to assess their created content’s
performance on specific tasks, which can provide insight on
the balance among different spaceships or rank spaceships
with regards to challenge (if the spaceships are used as
enemies).



The evaluation tool of the framework takes into account
both the physics simulations and the steering controller used
in the actual game environment, providing a generic approach
to performance assessment but also allowing for the re-
evaluation of content under new circumstances. In particular,
within a game company, hand-crafted or procedurally gen-
erated spaceships can be evaluated on an early steering con-
troller; when a more elaborate steering controller or physics
simulation is in place the same content can be re-evaluated,
providing insight on how the new game environment affects
the balance of previously optimized content. Even if the
optimization process proposed is not yet entirely suited for
the game industry (e.g. for its considerable computational
burden and lack of control over the generated results), the
evaluation process can still be an adequate authoring tool for
game development.

The framework and algorithm proposed are applicable
beyond the scope of spaceship design since the potential
of constrained optimization opens new possibilities to other
applications of PCG. For instance, procedurally generated
game levels (such as those for the StarCraft game [8])
can be constrained based on playability or fairness among
players, ensuring that feasible maps are both playable and
enjoyable, while infeasible maps are iteratively corrected
until they become playable. In PCG attempts via interactive
evolution (such as Galactic Arms Race [10]), the inclusion of
constraints on the performance competencies of the generated
content can ensure that the content presented to the player
is at least functional. The current argument for interactive
evolutionary content is that players will identify and discard
dysfunctional content [18]; however, making dysfunctional
content available to the player in the first place is arguably
unnecessary, leading only to player frustration and fatigue
while enhancing the impression that content is generated on a
hit-or-miss basis. Constrained optimization can be combined
with interactive evolution, with the infeasible population
being optimized based on a heuristic measuring the distance
from feasibility and the feasible population being optimized
based on a player’s implicitly inferred or explicitly reported
preferences [1].

VII. CONCLUSION

This paper presented a novel method where search-based
procedural content generation is performed utilizing con-
strained optimization techniques. The satisfaction of a priori
defined and simulation-dependent constraints ensures that
feasible content not only satisfies technical requirements but
also game design choices, and is able to fulfill all the required
tasks (if not in the most efficient manner). The efficiency
at fulfilling the tasks required from the content is assessed
through simulations using a physics system and steering
behaviors specific to a game environment. Combining FI-
2Pop with CPPN-NEAT, both the feasible individuals are
optimized towards better performance and the infeasible
individuals are brought closer to the boundary with the fea-
sible space. Findings demonstrate that spaceships generated
through the CPPN-FI-2Pop framework are not only more

visually “interesting” than those designed by humans, but
manage to be even more competitive than their hand-crafted
counterparts.

REFERENCES

[1] G. N. Yannakakis and J. Togelius, “Experience-driven Procedural
Content Generation,” IEEE Transactions on Affective Computing,
2011, (in print).

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” in Proceedings of the EvoStar
Conference. Springer-Verlag, April 2010.

[3] K. O. Stanley, “Exploiting regularity without development,” in Pro-
ceedings of the AAAI Fall Symposium on Developmental Systems.
Menlo Park, CA: AAAI Press, 2006.

[4] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a
feasible-infeasible two-population (fi-2pop) genetic algorithm for con-
strained optimization: Distance tracing and no free lunch,” European
Journal of Operational Research, vol. 190, no. 2, pp. 310–327, October
2008.

[5] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling Player
Experience in Super Mario Bros,” in Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games. Milan, Italy: IEEE,
September 2009, pp. 132–139.

[6] J. Togelius, R. De Nardi, and S. Lucas, “Towards automatic person-
alised content creation for racing games,” in Computational Intelli-
gence and Games, 2007. CIG 2007. IEEE Symposium on, 2007, pp.
252–259.

[7] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelback, and
G. Yannakakis, “Multiobjective exploration of the starcraft map space,”
in Computational Intelligence and Games (CIG), 2010 IEEE Sympo-
sium on, 2010, pp. 265 –272.

[8] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. N.
Yannakakis, “Multiobjective exploration of the starcraft map space,”
in Proceedings of the IEEE Conference on Computational Intelligence
and Games, Copenhagen, Denmark, 18–21 August 2010, pp. 265–272.

[9] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L. Lanzi,
“Evolving Interesting Maps for a First Person Shooter,” in Proceedings
of EvoGames: Applications of Evolutionary Computation, ser. Lecture
Notes on Computer Science, vol. 6624. Springer, 2011.

[10] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Evolving content in
the galactic arms race video game,” in CIG’09: Proceedings of the 5th
international conference on Computational Intelligence and Games.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 241–248.

[11] C. Browne and F. Maire, “Evolutionary game design,” Computational
Intelligence and AI in Games, IEEE Transactions on, vol. 2, no. 1,
pp. 1–16, mar. 2010.

[12] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Computational Intelligence and Games, 2008. CIG ’08.
IEEE Symposium On, dec. 2008, pp. 111–118.

[13] N. Sorenson and P. Pasquier, “Towards a generic framework for
automated video game level creation,” in Proceedings of the European
Conference on Applications of Evolutionary Computation (EvoAppli-
cations), vol. 6024. Springer LNCS, 2010, pp. 130–139.

[14] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[15] Z. Michalewicz, “A survey of constraint handling techniques in evo-
lutionary computation methods,” in Proceedings of the 4th Annual
Conference on Evolutionary Programming. MIT Press, 1995, pp.
135–155.

[16] M. Schoenauer and Z. Michalewicz, “Evolutionary computation at the
edge of feasibility,” in PPSN IV: Proceedings of the 4th International
Conference on Parallel Problem Solving from Nature. London, UK:
Springer-Verlag, 1996, pp. 245–254.

[17] C. Reynolds, “Steering behaviors for autonomous characters,” in Game
Developers Conference 1999, 1999.

[18] E. J. Hastings and K. O. Stanley, “Interactive genetic engineering of
evolved video game content,” in Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, ser. PCGames ’10. New
York, NY, USA: ACM, 2010, pp. 8:1–8:4.


