
Piecemeal Evolution of
a First Person Shooter Level

Antonios Liapis

Institute of Digital Games, University of Malta
antonios.liapis@um.edu.mt,

WWW home page: http://antoniosliapis.com/

Abstract. This paper describes an iterative process for generating multi-
story shooter game levels by means of interlocking rooms evolved indi-
vidually. The process is highly controllable by a human designer who can
specify the entrances to this room as well as its size, its distribution of
game objects and its architectural patterns. The small size of each room
allows for computationally fast evaluations of several level qualities, but
these rooms can be combined into a much larger shooter game level.
Each room has two floors and is generated iteratively, with two stages
of evolution and two stages of constructive post-processing. Experiments
in generating an arena-based level for two teams spawning in different
rooms demonstrate that the placement and allocation of entrances on
each floor have a strong effect on the patterns of the final level.

Keywords: Procedural Content Generation, Level Design, First Person
Shooter, Constrained Optimization, Iterative Refining

1 Introduction

While procedural content generation (PCG) has a history of almost four decades
in the game industry, it remains a niche —almost mystical— topic for many
game development teams. Especially for the PCG research community, commu-
nication and collaboration with industry experts and game designers has been
sparse. Highlights of academic PCG taking the commercial route usually have the
researcher lead the game development cycle; notable examples include Galactic
Arms Race [1], Petalz [2], Sure Footing [3], Unexplored by Joris Dormans (Lu-
domotion 2017) and Darwin’s Demons [4].

Admittedly, a factor for the skepticism of the game industry towards PCG
research is the often poor communication between the academic and the game
developer community. However, a more tangible factor is that PCG research of-
ten builds monolithic generative systems for a specific game; most often, such
games are either simplifications of outdated games, such as Super Mario Bros
(Nintendo 1985), or games designed explicitly for the research problem at hand,
such as GVGAI level generation [5]. Even when the generated artefacts could be
—under circumstances or after post-processing— applicable to a broader genre
of games, developers are skeptical because they do not see a way to control the



2 Antonios Liapis

generative processes [6]. Being able to both understand (e.g. through visual in-
spection) and control the outcomes of the generative process is an important
reason why commercial generators are often based on templates. Indicatively,
dungeons in Diablo III (Blizzard 2012) consist of large hand-authored ‘jigsaw
pieces’1 stitched together by a simple generator that chooses which piece attaches
to which, then populates each piece with monsters and treasure. A similar pro-
cess is followed by Spelunky (Mossmouth 2012), where every level is split into
16 ‘segments’ with randomized connections; the layout of each ‘segment’ is se-
lected from a set of templates and is then randomized somewhat and populated
with treasures and monsters [7]. In contrast, academic PCG rarely focuses on
modularity for two reasons: (a) often complicated algorithms are included which
can not be compartmentalized; (b) in search-based PCG [8] or constraint-based
PCG [9], content must usually be in its final form in order to assess its quality
(in order to improve it or to test all constraints, respectively).

Providing different degrees of control to human designers has also been a topic
of research within PCG, of course. Generators such as those by Doran and Par-
berry [10] give a multitude of parameters (many of them not entirely intuitive)
for the user to tweak. The shader generators of Howlett, Colton and Browne
[11] allow the user to specify the target color which evolution will try to match.
The editor for Refraction allows the designer to specify how each generated level
must be solved [12]. Danesh [6] allows users to view the generative space and
explore more intuitively how the different parameters impact the quality of the
results. Generators working alongside designers, e.g. in mixed-initiative design
[13], also offer a large degree of control to the designer but are unable to create
new content for players during runtime. The academic PCG approach closest to
the commercially popular template-based generation is based on grammars [14],
where one generator first creates the mission graph —a high-level representation
of the final level— and then replaces the high-level nodes of that graph with level
architecture which in most cases is based on human-made ‘jigsaw pieces’. As an
example, in the commercial game Dwarf Quest (Wild Card 2013) the mission
can be generated from editable grammars describing the allowed sequence of
generative commands [15] or evolved towards a designer-chosen fitness function
[16]; then the mission is converted into a Dwarf Quest level consisting of pre-
made rooms mapped to the description of the node (e.g. a boss room will have
a specific room layout, monsters and treasures within it).

Inspired by template-based commercial generators, this paper presents a gen-
erative algorithm for first person shooter (FPS) games which allows many de-
grees of control and outputs rooms which can then be combined like jigsaw
pieces as desired by game designers (or while the game is played) to create the
full map. The generator creates rooms with two floors because many level pat-
terns popular in FPS games, such as a gallery or a sniping position [17], require
the presence of areas above and below them. The generative process is iterative,
first evolving a draft of the ground floor’s architecture, then creating a draft of

1 Interior jigsaw pieces is a term used by a Blizzard employee on the Blizzard forums
under the nickname Bashiok.



Piecemeal Evolution of a First Person Shooter Level 3

the top floor’s architecture which is then evolved along with the placement of
game objects. A two-step evolutionary process has been shown to be beneficial
when evolving levels with two floors [18, 19]. Both evolutionary steps use a con-
strained optimization algorithm to ensure that the final content is playable; the
criteria for what is playable, the room’s size and the game items within it are con-
trolled by the designer before evolution begins. More importantly, the designer
specifies the number and placement of entrances to the room, which cannot be
changed by the evolutionary process. Where entrances are placed affects how
different rooms connect to each other, but also affects the patterns favored by
the generated content as entrances are considered in the fitness functions of the
evolutionary iterations; this will be evaluated in experiments of this paper.

Unlike many other search-based PCG projects in academia, the generative
processes in this paper are iterative, modular and parameterizable. While arti-
ficial evolution is the core generative method, it takes place in iterations inter-
spersed with post-processing steps which can significantly affect the look and
feel of the final level. Moreover, the evolutionary steps themselves integrate sev-
eral constraints which are not strictly based on playability but rather on the look
and feel of the level. These additions were made at the request of game designers
and with specific gameplay concerns in mind, during the collaboration with Luiz
Kruel and his game development team2. The room-based generation which allows
for modular re-combination of different pieces (generated or human-authored)
was found preferable to level designers than a monolithic level generation al-
gorithm. Controlling the room size and entrance placement was similarly vital
in order to integrate procedural generation to the team’s design process. Dead-
end removal in post-processing steps was deemed essential because dead-ends
disrupt the run-and-gun FPS gameplay by forcing players to become “trapped”
and vulnerable to an ambush. Finally, constraints on open air tiles and walls in
each evolutionary step allows designers further control over the patterns they
would prefer in the generated level. This parameterized design space gives suffi-
cient control to designers in order to control the look and play patterns that are
produced by the generator.

2 Background Work on Map Sketches

The notion of a map sketch originates from Sentient Sketchbook [20], and en-
compasses all low-resolution representations of game levels which contain the
minimal number of tile types needed to describe the intended gameplay. For
example, in real-time strategy games the core necessary tile types are impass-
able terrain, players’ bases, resource-rich locations around the map, and empty
passable tiles. For the shooter genre, the core tile types could be the players’ (or
teams’) spawn locations, weapon pickups, and possibly also health pickups if the
game does not feature regenerating health [21]. Since the low-resolution sketch

2 A talk by Luiz Kruel at the 2017 Game Development Conference (GDC) highlighted
the generative pipeline followed in this paper, focusing on the transformation of the
top-level views of this approach into 3D levels.



4 Antonios Liapis

is composed of a few tiles of even fewer types, it can be evolved using a direct
encoding [8] with genetic operators changing each tile individually, e.g. changing
from one tile type to another or swapping adjacent tiles.

Map sketches are general level descriptors as they can be translated (or rep-
resented) at a post-processing detailing step into a high-resolution game level
in 2D or 3D [21]. A number of general evaluations of game level patterns [21]
have been designed with map sketches in mind, focusing on the patterns of ex-
ploration, balance (or symmetry) and strategic resource control introduced by
Bjork and Holopainen [22]. These evaluations are straightforward to compute
via pathfinding (for resource control) and flood fill (for exploration) algorithms,
and are lightweight in the small map sizes of sketches. This paper iteratively
evolves FPS rooms towards improving exploration and safe area evaluations: the
former captures the effort taken to reach one or more tiles starting from another
tile, while the latter counts the number of tiles (of any type) which are much
closer to one tile than to all other tiles of the same type. Balance for exploration
and safe area assesses whether some tiles are easier to find than others or some
tiles have far more safe tiles around them than others, respectively. Details of
the calculation of these fitness dimensions are provided by [21].

3 Methodology

The levels generated by the algorithm are composed of two floors, one placed
on top of the other. Players can move from the ground floor to the top floor
through jump pads, which lead to jump landings on the top floor right above
them. Players can move from the top floor to the ground floor through the same
jump landing holes, but also through open air tiles which do not have a floor
and allow players to jump down to adjacent tiles on the ground floor. Since the
levels are intended for team-based deathmatch gameplay, tiles where each team
starts from are included (spawn points). Moreover, the level contains weapon
pickup tiles which allow players passing through them to gain more powerful
weapons (and replenish their ammo). Both floors can contain wall tiles which
block line of sight and movement through them. As with all map sketches, these
few tile types (in addition to entrance tiles which have no gameplay effect but
are vital for connecting rooms together) constitute the minimal components3

that facilitate FPS gameplay in levels with more than one floor.
The principle behind the entire generative pipeline presented in this paper

is iterative design, summarized in Figure 1. As shown in Figure 1a, each level
is split into rooms which are evolved separately, one at a time. When evolving
each room, the iterative process becomes obvious (see Figure 1b): note that each
step for individual room generation is automated and does not require designer
intervention. First, evolution produces a draft of the ground floor, laying out
impassable tiles, jump pads and entrances. The fittest ground floor draft is used

3 Unlike [21], health pickups are not included following discussions with game designers
who did not consider them necessary; health pickups they easily be placed in a
constructive fashion post-generation or omitted due to re-generating health.



Piecemeal Evolution of a First Person Shooter Level 5

se
gm

en
ta

tio
n

ev
ol

ve
d 

se
gm

en
ts

co
m

pl
et

e 
FP

S 
le

ve
l

de
si

gn
er

-s
pe

ci
fie

d 
la

yo
ut

bottom floor
top floor

ground floor
top floor

ground floor
top floor

ground floor
top floor

(a) Overall generative pipeline

de
si

gn
ed

gr
ou

nd
 fl

oo
r 

la
yo

ut

bo
tto

m
 fl

oo
r 

af
te

r 1
st

 e
vo

lu
tio

na
ry

 st
ep

re
m

ov
al

 o
f d

ea
d-

en
ds

on
 1

st
 p

os
t-

pr
oc

es
si

ng
 st

ep

in
iti

al
 tw

o-
flo

or
 

dr
af

t a
t t

he
 e

nd
 o

f t
he

 1
st

 
po

st
-p

ro
ce

ss
in

g 
st

ep

tw
o-

flo
or

 le
ve

l a
fte

r t
he

2n
d 

ev
ol

ut
io

na
ry

 st
ep

re
m

ov
al

 o
f d

ea
d-

en
ds

 a
nd

 
in

ac
ce

ss
ib

le
 a

re
as

 a
fte

r t
he

 
2n

d 
po

st
-p

ro
ce

ss
in

g 
st

ep

ground floor
top floor

ground floor
top floor

ground floor
top floor

(b) Step-by-step
room generation

Fig. 1. Overall generative pipeline for partitioning and combining rooms (Fig. 1a); the
designer specifies how the rooms are sized and where their entrances (in magenta) are
placed, and the iterative generation results in two-floor rooms which can be combined
into the final shooter level. Each room is generated through a step-wise process shown
in Fig. 1b, where an evolved ground floor which after post-processing generates a first
draft of the top floor; then both floors are evolved and finalized through a second
post-processing step.



6 Antonios Liapis

as a basis for creating the two-floor level; initially, the only tiles of this draft top
floor are open air tiles, jump landings and empty tiles (which are specified by the
patterns of the floor under them) and the entrances (which are specified by the
user). After this process, all tiles specified by the above two-step drafting process
are “frozen”: evolution can not change pre-existing walls, jump pads/landings
or open air tiles during subsequent stages, although it can change empty tiles
normally. The second stage of evolution populates both floors with weapons and
spawn points and may also add walls on either floor. The fittest two-floor level is
then post-processed to remove unused corridors and jump pads/landings. Once
this process is complete for each individual room, the final rooms are connected
together as desired by the designer to form the final FPS game level.

3.1 Evolving the ground floor

The first stage of generation is the evolution of a first draft of the ground floor,
the structure of which will form a draft for the top floor. In this stage only the
ground floor is evolved: the genotype stores only half of all tiles in the room. Evo-
lution starts from an initial population containing the designer-specified number
of jump pads and a number of wall tiles equal to 10% of all tiles randomly placed
in the room, as well as the entrances placed where the designer has requested
them; entrance tiles will not be changed or moved by evolution. Evolution uses
mutation alone to (a) transform an unoccupied passable tile into a wall or vice
versa (25% chance), or (b) swap any tile with an adjacent one (5% chance).
Following the literature [21], between 5% to 20% of all tiles can be mutated in
this way per individual. In order to ensure that evolving levels satisfy certain
playability constraints, evolution in carried out in two separate populations using
the feasible-infeasible two-population genetic algorithm (FI-2pop GA) paradigm
[23]. Each population contains only individuals which satisfy all playability con-
straints (the feasible population) or individuals which fail them (the infeasible
population); offspring of feasible individuals may be infeasible in which case they
migrate to the infeasible population, and vice versa. Both populations evolve to
maximize or minimize a fitness value, using fitness-proportionate roulette-wheel
selection and minimal elitism: the best individual in each population is copied
unchanged to the population of the next generation.

The feasible population evolves to maximize a sum of three equally weighted
fitnesses formulated in [21]: (a) exploration from any entrance or jump pad to
any other entrance or jump pad, (b) balance of exploration from any entrance
to any entrance, (c) balance of exploration from any entrance to any jump pad.
On the one hand, exploration rewards all entrances and jump pads which are far
away, but the two balance metrics distinguish between entrances (which may be
closer together due to designer specifications) and jump pads; the two jump pads
should be equally hard to reach from all entrances, but that does not need to be
comparable to the exploration effort between two entrances. The calculation of
exploration is shown graphically in Fig. 2.

Meanwhile, the infeasible population contains individuals which fail one or
more of these constraints: (a) all entrances and jump pads must be connected



Piecemeal Evolution of a First Person Shooter Level 7

(a) Exploration
from TLE to BRE.

(b) Exploration
from BRE to TLE.

(c) Exploration from
TLE to top JP.

(d) Exploration from
top JP to TLE.

Fig. 2. Fitness calculation of the first evolutionary step: exploration between entrances
(top left as TLE and bottom right as BRE). Exploration effort from TLE to BRE is
almost as high as from BRE to TLE (i.e. two fewer tiles covered). On the other hand,
from TLE the nearest jump pad (JP) is easily found, while starting from that JP the
exploration required to find TLE is much higher, and the two efforts are not balanced.

via passable paths, (b) jump pads are not placed under entrance tiles on the top
floor, (c) entrances or jump pads are at least two tiles away from any entrance or
jump pad, (d) the number of walls does not exceed 30% of the floor’s tiles and (e)
the number of tiles that have all their neighbors passable does not exceed 10%
of the floor’s tiles. Some of these constraints are self-evident; all entrances and
jump pads must be connected so that a player can use them but also so that the
exploration metric can be calculated. Other constraints are based on designer
feedback, so that maps are not overwhelmed by walls and maze-like corridors but
also not leading to overwhelming open air sections in the top floor (discussed in
Section 3.2). The infeasible population evolves to minimize an infeasible fitness
function proportionate to the distance to feasibility, which is a sum of features
that violate constraints (e.g. the number of disconnected entrances and jump
pads or the number of game elements closer than two tiles to each other).

3.2 Creating the top floor from the ground floor

Once the first evolutionary step is complete, the fittest individual in the final
population becomes the basis for the first draft of the top floor. Before this
happens, however, a constructive algorithm removes corridors leading nowhere
(i.e. dead-ends); this level pattern was found undesirable for the FPS genre
as players could easily be ambushed, or must backtrack their steps which is
not desirable for the run-and-gun aesthetic of such games. This step iteratively
replaces unoccupied dead-ends with a wall (red circles in Fig. 1b). A dead-end
is a tile with only one connection (on the navigation mesh) to adjacent passable
tiles. Dead-ends with jump pads or entrances are not removed as they still allow
movement to the top floor or to the next room respectively.

Once dead-ends are removed, the top floor is initialized with entrances (as
specified by the designer), jump landings (on the same locations as their jump
pad counterparts on the ground floor), passable platforms and open air tiles.
Open air tiles represent areas of the top floor which have no solid flooring,
allowing the player to aim at opponents on the ground floor or jump down to it.



8 Antonios Liapis

(a) Exploration effort
from ground floor.

(b) Exploration effort
from top floor.

(c) Safe areas around
weapons & entrances.

Fig. 3. Exploration effort from the bottom right (BRE) entrance on the ground floor
to the left (LE) entrance of the top floor (Fig. 3a) which requires use of jump pads.
Compare with the exploration effort from LE which uses the open air sections to jump
down and quickly find BRE (Fig. 3b). The other fitness when evolving both floors is
the number of safe tiles to an entrance, weapon, or spawnpoint (Fig. 3c). Two weapons
on the top floor have safe tiles on both floors: the weapon with blue safe tiles (due to
open-air tiles); the weapon with yellow safe tiles (due to the nearby jump landing).

In order to maintain some structural integrity with the ground floor, only large
areas in the ground floor have open air sections above them. This is calculated
based on the navigation mesh by finding tiles on the ground floor which are fully
connected, i.e. all their neighbors are passable tiles. If there is a fully connected
tile in the ground floor (yellow circles in Fig. 1b), then the top floor tile above
it and its immediate neighbors become open air tiles with one exception: if any
open-air tile inserted in this way is adjacent to an entrance or jump landing,
then it is replaced by a passable platform instead (such exempt tiles appear as
cyan circles in Fig. 1b). This exception ensures that jump landings and entrances
always have a platform around them for the player to land on or survey the level.

All rooms with two floors have a special navigation mesh which provides
connections across floors. Two-way connections are created between jump pads
and jump landing tiles, which is the only way that a path from the ground floor
to the top floor can be computed. The system also creates one-way connections
between platforms on the top floor and passable tiles on the ground floor which
are over open air tiles adjacent to these platforms. The navigation mesh assumes
that players can not jump more than a tile’s worth of distance, and thus can not
jump over an open air tile to another platform on the top floor.

3.3 Evolving both floors

Once the layout of the top floor is created, both floors go through another
evolutionary step which adds walls, weapon pickups and the teams’ spawn points
in the room. Using the same FI-2pop GA and parameters (including the mutation



Piecemeal Evolution of a First Person Shooter Level 9

operators and probabilities), evolution starts by randomly allocating in both
floors the weapons and spawn points. The number of weapons and spawn points
are the same in all evolving levels, and are specified by the designer. Unlike
the previous evolutionary stage, no additional wall tiles are placed in the initial
population but are added via mutation (which changes passable tiles to walls).
This mutation can add walls on either floor in theory; however, most of the
level structure of the ground floor is “frozen”, so walls seem to be added almost
exclusively to the top floor. Elements evolved (and post-processed) from the
previous steps are “frozen”, which allows for the room to be refined in steps,
adding new elements (e.g. weapons) but respecting designs finalized in past steps.

Evolution is carried out in a feasible and an infeasible population as described
in Section 3.1. The feasible population attempts to maximize a sum of these
equally weighted fitnesses: (a) exploration from any entrance, spawn point or
jump pad/landing and (b) the balance thereof, (c) the number of safe tiles around
weapons, spawn points and entrances and (d) the balance thereof. Any passable
tile is safe for e.g. a weapon if the tile’s distance to this weapon is half or less of
the distance to the next closest weapon, spawn point or entrance. Formulations
and parameters of these metrics are found in [21]. The constraints for feasible
individuals are: (a) all entrances, jump pads/landings, weapons and spawn points
must be reachable via a passable path (including jumps through open air tiles),
(b) the number of total walls does not exceed 30% of the total room’s tiles.

3.4 Post-processing to create the final room

Once evolution of two-floor rooms is complete, the fittest feasible individual is
chosen as the final result. Several post-processing steps are applied before it is
presented to the designer. Dead-ends are again iteratively filled with wall tiles
unless they are occupied by entrances, jump pads/landings, weapons or spawn
points; the process continues until no more walls can be placed. After this step,
jump pads or landings which are surrounded only by wall tiles or open air tiles
are removed along with their corresponding tile on the other floor. This step is
necessary in case the jump pad leads nowhere, especially after dead-end removal.
After this step, inaccessible areas on both floors are filled with wall tiles; this
is achieved via flood-fill algorithms originating from the jump pad tiles (for the
ground floor) or the jump landings (for the top floor). All tiles removed in this
fashion are shown as red circles in Fig. 1b.

4 Experiments

Five example layouts for FPS levels will be tested in this paper, to evaluate the
impact that entrance placement has on the evolved rooms. For the sake of sim-
plicity, three rooms are evolved per level: a large square arena of 11 by 11 tiles,
and two rooms of 6 by 11 tiles acting as bases —each hosting a team’s spawn
point. The three rooms are horizontally aligned and are simply joined together



10 Antonios Liapis

(a) L4,4 (b) L4,2 (c) L2,4

(d) L4,0 (e) L0,4

Fig. 4. Sample evolved levels for different layouts.

side-by-side in the end, as in Fig. 1a. Experiments in this paper test five config-
urations of entrances for each of these rooms (entrances are mirrored between
adjacent rooms). The arena can have two entrances to each base either on the
top or on the ground floor, four entrances (two per floor), and combinations of
three entrances. In all cases, each base has one spawn point tile and two weapon
tiles while the arena has six weapon tiles; all rooms have two jump pads and two
landing tiles. From this point forward, the different layouts are identified as Li,j

where i and j is the number of entrances on the ground floor and on the top
floor respectively: L4,2 has four entrances on the ground floor and two entrances
on the top floor (see Fig. 1a). In the visualization of Fig. 4, spawn points are
shown as A and B in the left and right base respectively; open air tiles are shown
as white and passable tiles and platforms in light gray.

In this experiment, 100 evolutionary runs are used to create the total of 15
rooms (3 per layout). Each evolutionary step is performed on a population of
100 individuals evolving for 20 generations. Indicative results of evolved levels
for the different layouts are shown in Fig. 4. Each of the sample levels has a fair
number of open-air tiles, although not always in every room (e.g. in the right
base of Fig. 4d or the left base of Fig. 4e). Except for Fig. 4a, the top floor
has passages that are almost as winding as the ground floor. Except for Fig. 4c,
it seems that both spawn points are often found on the floor with the fewest



Piecemeal Evolution of a First Person Shooter Level 11

entrances. The general patterns of evolved levels for different layouts in terms
of tile placement and winding passageways will be explored in Sections 4.1 and
4.2. Meanwhile, it is interesting to note some properties of the specific levels of
Fig. 4. Walls and open air tiles tend to create ‘islands’ on the top floor which can
not be accessed from other parts of the top floor without traversing the ground
floor and ascending again through a jump pad. Examples include parts similar to
sniper positions which allow players to aim at opponents on the floor below via
adjacent open air tiles (e.g. left base in Fig. 4e, or left and right base in Fig. 4c).
In other cases, such as the left base in Fig. 4b, these islands are surrounded by
walls and act more as a fortified position for a defending player: opponents can
only attack through the singular jump pad; defending the spot is easy but leaving
it again is almost impossible. This pattern of a locked-in ‘island’ accessible only
via jump pad can also be found on the ground floor, for instance in the right base
of Fig. 4b. Another interesting pattern is found in Fig. 4a, where open air tiles
in the central arena partition the floor into two equally-sized platforms (only
accessible via a narrow passage surrounded by walls on the left of the arena); in
this case, the ground floor is a shortcut via the jump pads near each platform.

4.1 Comparing level structures

Table 1 shows the number of tiles in each level (i.e. the three rooms joined
together) and how they are distributed between the two floors. Results are col-
lected from 100 independent evolutionary runs per layout. Obviously the number
of weapons and spawn points is always the same in every layout (10 and 2 re-
spectively); the number of entrances depends on the layout but does not differ
among runs using the same layout. Since the last post-processing step removes
jump pads/landings leading nowhere, the number of jump pads is on average
less than what was specified by the designer (6), but not by much. In 75% of
runs (across all layouts) the number of jump pads was indeed 6; this number
is not affected by layout much. The layout does affect the number of wall tiles
and open air tiles: despite constraints, there is sufficient leeway for important
differences. There are certain patterns worth noting: layouts with few entrances
on the ground floor (L2,4, L0,4) have fewer open air tiles than other layouts.
Layouts with more entrances on the ground floor (L4,2, L4,0) have more wall
tiles than other layouts. Interestingly, L4,0 has far more wall tiles than all others
but also far more open air tiles, likely due to the second post-processing step
filling unreachable areas (due to lack of entrances) with walls on the top floor.

A much clearer picture is gleaned from the ratios of tiles per floor. Table 1
summarizes this, as the ratio of tiles of one type on the ground floor over the
total number of tiles of that type. Due to the five layouts chosen, the entrance
ratio on the ground floor is unique for each layout (bold in Table 1). Using this
as the primary characteristic to compare effects of the layout, we observe statis-
tically significant Pearson correlations (p < 0.05) with all other tile ratios shown
in Table 1. Specifically, there are very strong negative correlations between en-
trance ratio and wall ratio (ρ = −0.941), weapon ratio (ρ = −0.959), spawn
point ratio (ρ = −0.906) and game element ratio, i.e. weapons and spawn points



12 Antonios Liapis

Table 1. Average number of tiles, tile ratios and metrics for the different tested layouts.
Results are averaged from 100 generated levels, along with the 95% confidence interval.
The game elements metric encompasses weapon and spawn point tiles.

Layouts L4,4 L4,2 L2,4 L4,0 L0,4

Wall tiles 326±3 349±2 334±3 364±3 335±3
Open air tiles 41±2 41±2 36±2 47±3 30±3
Jump pad tiles 5.8±0.1 5.7±0.1 5.8±0.1 5.8±0.1 5.8±0.1

Ratio of tiles on the ground floor

Entrances 0.50 0.67 0.34 1.00 0.00
Walls 0.48±0.00 0.45±0.00 0.49±0.00 0.43±0.01 0.50±0.00
Weapons 0.48±0.03 0.39±0.03 0.55±0.02 0.38±0.03 0.64±0.02
Spawn Points 0.15±0.05 0.11±0.04 0.36±0.07 0.08±0.04 0.76±0.06
Game Elements 0.43±0.02 0.34±0.03 0.51±0.02 0.33±0.03 0.66±0.02

Level patterns and fitnesses

Spawn distance 31.8±0.9 34.8±1.0 35.4±1.3 43.4±1.4 39.4±1.7
Spawn exploration 0.92±0.011 0.94±0.008 0.93±0.01 0.94±0.008 0.91±0.014
Spawn explor. balance 0.95±0.009 0.94±0.010 0.93±0.01 0.95±0.008 0.93±0.013
Weapon area 0.33±0.010 0.35±0.012 0.36±0.012 0.38±0.016 0.41±0.012
Weapon area balance 0.57±0.013 0.58±0.014 0.58±0.012 0.56±0.017 0.59±0.012

combined (ρ = −0.953). Finally, there is a significantly positive correlation be-
tween entrance ratio and total open air tiles in the level (ρ = 0.988); a strong
correlation with the number of total wall tiles (ρ = 0.755) is however not signif-
icant due the small set of 5 layouts tested. Even with the few layouts tested in
this paper, there are clear trends which are common-sensical given the fitnesses
used for feasible individuals in both evolutionary stages. For the first stage, when
there are few or no entrances on the ground floor, exploration focuses only on
placing jump pads as far apart as possible. This is easier than trying to improve
exploration of e.g. 6 tiles (4 entrances and 2 jump pads in the arena), so the
room does not need many walls to create winding passageways. In the second
stage, exploration favors spawn points as far away from jump pads/landings and
entrances as possible; tile safety favors weapons far away from entrances and
spawn points. When entrances are only on the top floor (L0,4) then obviously
the most distant spots for weapons or spawn points are on the ground floor.
Since weapons must also be far away from each other, on the other hand, it is
often the case that a few weapons are on the floor with more entrances while
most weapons are on the floor with fewer entrances.

4.2 Comparing level patterns

While ultimately a playtest with human players must test the playability of
each level, some gameplay qualities can be estimated based on the distance and
exploration effort between the two teams’ spawn points as well as how spaced
apart weapons are. Distance between spawn points is calculated on the shortest
path; exploration between spawn points, safe areas around weapons (and their



Piecemeal Evolution of a First Person Shooter Level 13

balance) are calculated through the same formulas as for evolution (except no
other tiles are considered), and the whole level is assessed rather than each room.

Table 1 shows the average fitness scores and metrics of 100 generated lev-
els per layout. The high value for spawn point exploration (and its balance)
indicates that players of both teams will explore most of the level to find the
opponents’ spawn point, regardless of layout. Exploration for L4,0 and L4,2 has
almost identical scores, which are significantly higher than those of L0,4 and L4,4.
After a few minutes of playtime, however, players will have identified the other
team’s spawning area so the more pertinent metric is the distance between spawn
points: the lowest distance is for L4,4 and the highest for L4,0 (both findings are
statistically significant). The other layout without entrances on one floor (L0,4)
has significantly higher spawn point distances than all other layouts except L4,0.
There are therefore some similarities between the patterns shown from spawn
point exploration and their distance: the few entrances of L4,0 lead to longer
paths that are more complex to follow, while the many entrances of L4,4 pro-
vide shortcuts to opposing players and makes spawn points easier to find. While
neither distance nor exploration effort of spawn points is explicitly targeted by
evolution (since no room has more than one spawn point), when rooms are com-
bined these desirable patterns emerge as each room rewards exploration between
entrances (and one spawn point, in the case of base rooms).

On the other hand, roughly 40% of tiles in the levels are much closer to one
weapon than to others but not all weapons have similar number of safe tiles
around them. This admittedly points to a sub-optimal level pattern, as some
weapon locations may be more easily reachable and thus preferred to others. It
is not surprising however that any algorithm struggles to balance the placement
of so many weapon pickups. Moreover, the rooms are not equal: the arena has
double the size and triple the number of weapons of each base. Weapons in bases
have far more safe tiles than those in arenas, which explains the imbalance of
this metric. Here, splitting the level into rooms is detrimental as the algorithm
has no way of knowing how other rooms place weapons. There is no easy way
of alleviating that fact except by having weapons proportionate to each room’s
area, yet this would remove much of the benefit of ad-hoc controllability of each
room by the designer. Regarding differences between layouts, the only significant
difference worth noting is for L4,4 which has the lowest weapon area score than
all other layouts, likely due to the fact that the arena has to optimize the safe
areas around 8 entrances and 6 weapons versus fewer entrances of other layouts.

5 Discussion

The modular way in which the level is built out of components offers substantial
control to the designer. While experiments focused on a small subset of possible
level layouts, there are endless possibilities for how custom-defined rooms can
be combined together. For example, the current rooms can be combined to form
four-floor shooter levels, by placing L4,4 bases on either side of a stacked set
of L0,4 (top) and L4,0 (bottom) arena. The current two-floor rooms can also



14 Antonios Liapis

be combined with single-floor rooms evolved in a variant of the second evo-
lutionary and post-processing step, to create two-story levels with an internal
courtyard, for instance. Finally, the designer can combine evolved rooms with
human-authored ones, such as a manually designed corridor or gallery to con-
nect two arenas. The ability to specify rooms of any size, any connectivity and
however many game objects within it, as well as the ability to combine rooms
in many ways with other generated or human-authored rooms affords an excep-
tionally large design space for both designer and algorithm to explore. While
the connectivity between rooms, and the properties of the rooms themselves,
are currently controlled by human designers, an extension of the current system
could allow another generator to produce the high-level layouts (i.e. room sizes
and how they connect to each other) in a similar fashion as [24].

While the different entrance setups can affect the patterns that emerge, all
tested layouts seem to achieve high-quality results with diverse pathways con-
necting one team’s spawn area to the other and weapons which generally are
not clumped together. Further experimenting with layouts, room sizes, and the
many controllable parameters of the generator (maximum ratio of walls or open
air tiles, number of weapons and spawn points) could allow designers to find the
perfect setup for parts of a shooter level (e.g. a “bunker” or a “sniper’s nest”
room). The relatively large number of parameters in the generative system are
admittedly kept constant for the most part in the experiments of this paper; the
values chosen however came from experimentation and designer feedback by Luiz
Kruel. The system proved quite sensitive to constraints on minimum wall ratio
and maximum open air ratio, which affected discovery of any feasible results.

The work presented here is intended for use in a commercial game, leading to
specific design decisions, post-processing steps, fitness functions and constraints.
While this system outputs 2D maps, converting them into 3D is relatively easy
with Houdini, an engine developed by SideFX; the 3D output of the two-floor
levels of this paper for use in the Unreal Engine 4 (Epic Games 2014) was shown
in the GDC 2017 talk by Luiz Kruel. The generative system is a specialized
version of the general generative framework of [21], since the included game
objects and navigational patterns are both biased by and biasing the design
options for such a game. For instance, the tile-based representation complicates
the addition of larger structures which span multiple tiles (e.g. staircases): jump
pads/landings are convenient for the generator but may limit designers. On the
other hand, the team-based gameplay of the intended game guides the sparse
use of spawn points and the fitness functions that assess them, which favor
‘hiding’ them away from entrances to prevent enemy camping. In a free-for-all
deathmatch game, the generator would likely benefit from more spawn points
which could be evaluated differently: see [18, 25] for examples. Finally, dead-
end removal was requested by FPS level designers: the post-processing steps
provided an easy fix to this problem, but at the cost of the resulting room being
at times much different than what is being evolved (and evaluated). A different
representation, for instance based on rooms as in [26], could make removing
deadends and placing larger structures more straightforward.



Piecemeal Evolution of a First Person Shooter Level 15

6 Conclusion

This paper described a multi-step process for generating rooms of a shooter
game which can be specified a priori and re-combined a posteriori by a human
designer. Generated two-floor levels allow for level patterns such as sniping po-
sitions and shooting galleries to emerge as a byproduct of multiple evolutionary
steps which target the core qualities of each room: exploration effort from dif-
ferent locations of the room and dispersal of game items within it. Experiments
tested several room layouts, combining them into a simple arena-based shooter
level for two teams, and showed that the placement of entrances affects how game
items are allocated on each floor, and thus indirectly which floor will be visited
more frequently by human players. However, different layouts do not severely
impact the general qualities of the generated levels (e.g. the effort of reaching
opponents’ bases). As the game is developped, these hypotheses must be tested
with human players competing in 3D levels generated from different layouts.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 693150. The gen-
erator was the result of a collaboration with Luiz Kruel, who provided valuable
feedback on level patterns and designer constraints for using the system.

References

1. Hastings, E.J., Guha, R.K., Stanley, K.O.: Automatic content generation in the
galactic arms race video game. IEEE Transactions on Computational Intelligence
and AI in Games 1(4) (2009)

2. Risi, S., Lehman, J., D’Ambrosio, D.B., Hall, R., Stanley, K.O.: Combining search-
based procedural content generation and social gaming in the petalz video game.
In: Proceedings of the Artificial Intelligence and Interactive Digital Entertainment
Conference (2012)

3. Dewsbury, N., Nunn, A., Syrett, M., Tatum, J., Thompson, T.: Scalable level
generation for 2d platforming games. In: Proceedings of the FDG Workshop on
Procedural Content Generation (2016)

4. Soule, T., Robison, B.D., Heck, S., Haynes, T.E., Street, D., Wood, N.: Darwin’s
demons: Does evolution improve the game? In: Proceedings of the European Con-
ference on the Applications of Evolutionary Computation (2017)

5. Khalifa, A., Perez-Liebana, D., Lucas, S., Togelius, J.: General video game level
generation. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence (2016)

6. Cook, M., Gow, J., Colton, S.: Danesh: Helping bridge the gap between procedural
generators and their output. In: Proceedings of the FDG workshop on Procedural
Content Generation (2016)

7. Shaker, N., Liapis, A., Togelius, J., Lopes, R., Bidarra, R.: Constructive generation
methods for dungeons and levels. In: Shaker, N., Togelius, J., Nelson, M.J. (eds.)
Procedural Content Generation in Games: A Textbook and an Overview of Current
Research, pp. 31–55. Springer (2016)



16 Antonios Liapis

8. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3) (2011)

9. Smith, A.M., Mateas, M.: Answer set programming for procedural content gener-
ation: A design space approach. IEEE Transactions on Computational Intelligence
and AI in Games 3(3), 187–200 (2011)

10. Doran, J., Parberry, I.: Controlled procedural terrain generation using software
agents. IEEE Transactions on Computational Intelligence and AI in Games 2(2),
111–119 (2010)

11. Howlett, A., Colton, S., Browne, C.: Evolving pixel shaders for the prototype video
game subversion. In: Proceedings of AISB’10 (2010)

12. Smith, A.M., Butler, E., Popovic, Z.: Quantifying over play: Constraining unde-
sirable solutions in puzzle design. In: Proceedings of the International Conference
on the Foundations of Digital Games (2013)

13. Yannakakis, G.N., Liapis, A., Alexopoulos, C.: Mixed-initiative co-creativity. In:
Proceedings of the 9th Conference on the Foundations of Digital Games (2014)

14. Dormans, J., Bakkes, S.C.J.: Generating missions and spaces for adaptable play
experiences. IEEE Transactions on Computational Intelligence and AI in Games.
Special Issue on Procedural Content Generation 3(3), 216–228 (2011)

15. van der Linden, R., Lopes, R., Bidarra, R.: Designing procedurally generated levels.
In: Proceedings of the AIIDE Workshop on Artificial Intelligence in the Game
Design Process (2013)

16. Karavolos, D., Liapis, A., Yannakakis, G.N.: Evolving missions to create game
spaces. In: Proceedings of the IEEE Conference on Computational Intelligence
and Games (CIG) (2016)

17. Hullet, K., Whitehead, J.: Design patterns in fps levels. In: Proceedings of the
Foundations of Digital Games Conference (2010)

18. Cachia, W., Liapis, A., Yannakakis, G.N.: Multi-level evolution of shooter levels.
In: Proceedings of the AAAI Artificial Intelligence for Interactive Digital Enter-
tainment Conference (2015)

19. Liapis, A., Yannakakis, G.N.: Refining the paradigm of sketching in AI-based level
design. In: Proceedings of the AAAI Artificial Intelligence for Interactive Digital
Entertainment Conference (2015)

20. Liapis, A., Yannakakis, G.N., Togelius, J.: Sentient sketchbook: Computer-aided
game level authoring. In: Proceedings of the 8th Conference on the Foundations of
Digital Games. pp. 213–220 (2013)

21. Liapis, A., Yannakakis, G.N., Togelius, J.: Towards a generic method of evaluating
game levels. In: Proceedings of the AAAI Artificial Intelligence for Interactive
Digital Entertainment Conference (2013)

22. Bjork, S., Holopainen, J.: Patterns in Game Design. Charles River Media (2004)
23. Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible

two-population (FI-2Pop) genetic algorithm for constrained optimization: Distance
tracing and no free lunch. European Journal of Operational Research 190(2) (2008)

24. Liapis, A.: Multi-segment evolution of dungeon game levels. In: Proceedings of the
Genetic and Evolutionary Computation Conference (2017)

25. Cardamone, L., Yannakakis, G.N., Togelius, J., Lanzi, P.L.: Evolving interesting
maps for a first person shooter. In: Proceedings of the Applications of evolutionary
computation (2011)

26. Lopes, P., Liapis, A., Yannakakis, G.N.: Targeting horror via level and soundscape
generation. In: Proceedings of the AAAI Artificial Intelligence for Interactive Dig-
ital Entertainment Conference (2015)


