
2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII)

PyPLT: Python Preference Learning Toolbox
Elizabeth Camilleri

Institute of Digital Games
University of Malta

Msida, Malta
elizabeth.camilleri.12@um.edu.mt

Georgios N. Yannakakis
Institute of Digital Games

University of Malta
Msida, Malta

georgios.yannakakis@um.edu.mt

David Melhart
Institute of Digital Games

University of Malta
Msida, Malta

david.melhart@um.edu.mt

Antonios Liapis
Institute of Digital Games

University of Malta
Msida, Malta

antonios.liapis@um.edu.mt

Abstract—There is growing evidence suggesting that subjective
values such as emotions are intrinsically relative and that an
ordinal approach is beneficial to their annotation and analysis.
Ordinal data processing yields more reliable, valid and general
predictive models, and preference learning algorithms have
shown a strong advantage in deriving computational models
from such data. To enable the extensive use of ordinal data
processing and preference learning, this paper introduces the
Python Preference Learning Toolbox. The toolbox is open source,
features popular preference learning algorithms and methods,
and is designed to be accessible to a wide audience of researchers
and practitioners. The toolbox is evaluated with regards to both
the accuracy of its predictive models across two affective datasets
and its usability via a user study. Our key findings suggest
that the implemented algorithms yield accurate models of affect
while its graphical user interface is suitable for both novice and
experienced users.

Index Terms—ordinal annotation, affect models, preference
learning, open source, software, tools, Python

I. INTRODUCTION

The question of how to best label subjective constructs
such as emotions and process the obtained labels is central
to disciplines involving demonstration data from humans, in-
cluding affective computing and human computer interaction.
A recent trend in the annotation and processing of such data
builds on extensive empirical evidence across several domains
and reveals the benefits of labeling and treating data of a
subjective nature as ordinal [1], [2]. Such a potential paradigm
shift towards ordinal data processing calls for methods and
tools which are accessible to researchers of these disciplines,
enabling the widespread use of ordinal (preference) machine
learning algorithms and further advancing the state of the art
in human-based annotation and modeling. Meanwhile, existing
preference learning tools [3] are limited by their narrow
target audience, and are outdated given the rapid expansion
of modern deep learning frameworks and algorithms.

To address the current lack of tools for processing ordinal
labels, this paper introduces the Python Preference Learning
Toolbox (PyPLT). The tool is based on the existing Preference
Learning Toolbox [3], introduced in 2015, but is written in a
more suitable and relevant language and contains additional
and improved features. PyPLT is designed to serve as a
Python-based, unified and accessible application for preference
learning, offering a user-friendly graphical interface (for begin-
ner and advanced users) in addition to an application program-
ming interface (for machine learning developers). The toolbox

is available at http://plt.institutedigitalgames.com. Currently
the toolbox gives users access to a number of ordinal data pro-
cessing methods and popular preference learning algorithms
based on support vector machines, artificial neural networks,
and deep learning. Importantly, the toolbox is open source so
that algorithms and other features may continue to be added.
The tool is relevant for research in ordinal label processing
and preference learning and is targeted to researchers and
practitioners in affective computing, user modeling, preference
handling, and human computer interaction at large.

The structure of the paper is as follows. Section II surveys
related tools for preference learning, while Section III de-
scribes the various modes and components of PyPLT in detail.
Section IV tests the capacity of PyPLT in deriving accurate
predictive models across two affective datasets (Section IV-A)
and demonstrates its usability via a user study (Section IV-B).
The paper concludes in Section V with a discussion on
the potential of PyPLT for further development through the
addition of algorithms and other data processing methods.

II. RELATED TOOLS

Preference learning (PL) is the area of supervised learning
dedicated to the processing and analysis of ordinal labels
[4], [5]. The approach has been increasingly popular within
affective computing given the availability of ordinal-based af-
fective datasets; see [2] for a detailed review. However, current
software tools for preference learning are limited to individual
algorithms, such as SVMrank1, a software implementation of
an algorithm for training Ranking SVMs [6], [7]. While the
LPCforSOS framework2 and extensions such as WEKA-LR3,
MEKA [8] and MULAN [9] allow for a wide variety of
classification methods offered by the WEKA toolkit [10] to be
trained on ordinal labels, they do not cater for partially ordered
non-absolute data. The Lemur Project’s RankLib library4 also
offers quite an extensive range of learning-to-rank algorithms;
however, it suffers from the same limitation as it only allows
for models to be trained on data in the form of ratings. On
the other hand, the jPL framework [11] caters for various
kinds of PL problems. As with most of the aforementioned
tools, jPL lacks a graphical interface which makes it quite

1http://www.cs.cornell.edu/people/tj/svm light/svm rank.html
2https://sourceforge.net/projects/lpcforsos/
3https://cs.uni-paderborn.de/?id=63906
4https://sourceforge.net/p/lemur/wiki/RankLib/

978-1-7281-3888-6/19/$31.00 ©2019 IEEE

inaccessible for many potential users who lack knowledge
of and experience with machine learning and the particular
tool. Furthermore, the tool focuses only on the modelling and
evaluation steps of the PL process, overlooking important steps
such as feature extraction, normalization, and feature subset
selection. The WEKA extensions, RankLib library, and jPL,
as well as the earlier Java implementation of the Preference
Learning Toolbox [3], are also limited by the underlying
programming language (Java) which is vastly less suitable for
data science compared to languages such as Python and R. The
choice of language makes the tools less likely to be integrated
with existing projects or further extended, as current advances
in machine learning more broadly use the Python language.

Beyond all aforementioned tools, PyPLT introduces a
Python-based tool which is open source and accessible, inte-
grates widely used machine/deep learning frameworks such as
TensorFlow and Keras, and features popular PL algorithms and
ordinal data processing methods under a unified framework.

III. THE PYPLT INTERFACE AND ALGORITHMS

The PyPLT toolbox may be used either as a software appli-
cation via its Graphical User Interface (GUI) or as a library
via its Application Programming Interface (API). Regardless
of the interface used, PyPLT offers various methods for each
step in the preference data modelling process. How the tool
can be used in each step is described below.

A. Modes

The GUI of PyPLT allows the user to select between two
modes of operation: beginner mode and advanced mode. The
beginner mode, depicted in Fig. 1, simplifies the experiment
setup process into 5 quick and easy steps: loading the data set,
choosing whether or not to apply automatic feature extraction,
choosing whether or not to apply feature selection, choosing
a PL algorithm, and finally running the experiment. In the be-
ginner mode, the algorithms’ parameters are pre-set to default
values of the external libraries used (TensorFlow, scikit-learn,
Keras), or the earlier version of PLT [3]. The advanced mode
involves the same 5 steps as the beginner mode, but each of the
first four steps is encapsulated in its own detailed tab (as shown
in part in Figs. 2-4). In the advanced mode, each tab contains
a set of options or parameters through which the experiment
setup may be fine-tuned by the user. Both modes provide a
help dialog containing useful information to guide the user for
each of the steps.

B. Dataset Loading and Parsing

As Fig. 1 shows, the first step in the preference data
modelling process involves loading the dataset intended for
preference learning. Data from any domain may be loaded
into the tool in the form of a Comma-Separated Values (CSV)
file structured for PyPLT5. A dataset needs to contain two
elements: a set of objects (input) and the relation or order
among them (output). In PyPLT, the dataset may be loaded in

5Details on preparing a CSV file for PyPLT can be found at http://plt.
institutedigitalgames.com/howto.php

Fig. 1. Screenshot of the beginner mode which hides the more detailed options
available in the advanced mode, offering a more simplified interface for setting
up an experiment.

one of two formats: a single file format for problems where
a global order of objects exists and a dual file format for
problems where a partial order of objects exists. A global
order of objects is a rating value given for each object in a
dataset, whereas a partial order is a set of pairwise preferences
given for a number of objects in the dataset. The GUI guides
the user through the loading process, ensuring that the dataset
is loaded correctly through various prompts. The interface also
offers a range of parameters for parsing the file.

C. Data Pre-processing

In PyPLT, the loaded dataset can be pre-processed in several
ways: via automatic feature extraction, manual feature selec-
tion, feature normalization, and dataset shuffling; see Fig. 2.

1) Automatic Feature Extraction: If the given dataset does
not include predetermined features, PyPLT allows the user to
apply automatic feature extraction. There are several feature
extraction or compression algorithms that we have considered
for inclusion in PyPLT, such as PCA variants and clustering
methods. Given the widespread use of autoencoders for single
or two dimensional signals in machine learning and affective
computing, however, the initial version of the PyPLT toolbox
features vanilla autoencoders to extract a user-specified num-
ber of features from the provided data. The autoencoder is
a neural network consisting of two parts—the encoder and
the decoder—and is considered a form of non-linear dimen-
sionality reduction or data compression [12]. The encoder
compresses the input data whereas the decoder decompresses

Fig. 2. Screenshot of the Preprocessing tab (advanced mode) with various
options for preprocessing the data.

the compressed version of the data. The autoencoder is trained
via backpropagation to create as accurate a reconstruction
of the input at the output layer as possible. The layer in-
between the encoder and the decoder (i.e., the code layer)
stores the compressed (encoded) version of the input (i.e.,
the extracted features). The autoencoder is optimized using
the Adam Optimizer [13] in the TensorFlow6 library and
its performance is determined via the mean squared error
function. In the advanced mode and via the API, the topology
of both the encoder and the decoder as well as the code size
(the number of neurons in the code layer) and other parameters
of the learning algorithm may be specified by the user.

2) Manual Feature Selection: Whether the dataset contains
predetermined features or the features are extracted automat-
ically, the advanced mode of PyPLT offers users the option
to manually include only a particular subset of these features
in the experiment while excluding others. This is facilitated
through user-friendly checkboxes in the GUI.

3) Feature Normalization: The initial version of PyPLT
offers two different methods for normalizing the features’
values: min-max normalization transposes the values of the
given feature to fit between a given range of values (from 0 to
1 by default), and z-score normalization which transforms the
values of the given feature such that the average value of the
feature is zero and the standard deviation is one. Both methods
are used widely in data normalization, hence their inclusion
to the initial version of PyPLT. In beginner mode, min-max
normalization is applied to all features by default.

4) Data Shuffling: In advanced mode, one may also choose
whether the dataset is shuffled prior to running any experiment
via a simple checkbox. Data shuffling is particularly important
for eliminating any order biasing in the data. If the dual file
format is being used, it is the order of the ranks (pairwise
preferences) that is randomized whereas if the single file
format is being used, it is the order of the samples that is
randomized. Moreover, randomization may be controlled via
a random seed specified by the user, allowing for replicability.

6https://www.tensorflow.org/

Fig. 3. Screenshot of the Feature Selection tab (advanced mode) where
users may opt to have the toolbox automatically select a subset of the most
predictive attributes in their data.

D. Automatic Feature Selection

While users may opt to filter which features are used in the
experiment manually (as described in Section III-C2), PyPLT
is able to automatically find the most relevant subset of input
features for preference models derived from the given data.
Users may opt for this via the Feature Selection tab depicted in
Fig. 3. The Sequential Forward Selection (SFS) [14] method is
currently available to this end. In this hill-climbing algorithm,
the selection procedure begins with an empty feature set
and a new feature is added with each iteration in bottom-up
fashion. The feature to be added is selected from the subset
of remaining features such that the new feature set generates
the maximum value of the performance function over all
candidate features. The method terminates when an added
feature yields equal or lower performance to the performance
obtained without it. Performance is computed as the prediction
accuracy of a model trained using that feature set as input. Any
of the PL algorithms implemented in the toolbox (see Section
III-E) may be used to train this model. If feature selection is
enabled, the performance of each feature is displayed in the
progress menu while the experiment is running, and the final
experiment report (see Section III-G) lists which features were
selected and the order in which they were selected.

E. Preference Learning

Once the data has been loaded and pre-processed, and a
subset of particularly relevant features has been automatically
selected (if applicable), a model may be inferred from the data
via preference learning. The current version of PyPLT offers
a number of PL algorithms for the user to choose from; in the
advanced mode and via the API, various parameters for each
algorithm may also be tuned (see Fig. 4). The three available
algorithms are representative PL methods used widely in the
literature, based on support vector machines and artificial
neural networks. The implementation of these algorithms in
PyPLT is based on existing code imported from popular
machine learning libraries that are efficient and powerful; these

Fig. 4. Screenshot of the Preference Learning tab (advanced mode) which
offers three different algorithms and evaluation methods.

supervised learning algorithms have been repurposed to handle
ranks and preferences.

1) RankSVM: This algorithm is a rank-based version of
the traditional Support Vector Machine (SVM) algorithm.
Provided with data examples of annotated classes or categories
as a form of output, an SVM uses a predefined kernel function
to map the data instances onto geometric points in a high-
dimensional space according to the input features that define
them [15]. The RankSVM algorithm [6], [16] attempts to
separate the data instances in the space via a hyperplane,
in order to match the given preference information. Unseen
instances may then be mapped to the space according to their
features and an output is produced based on which sub-space
they correspond to, according to the hyperplane. In PyPLT, the
algorithm was implemented using the scikit-learn7 library. The
kernel function may be specified by the user in the advanced
mode or via the API.

2) Feedforward ANN Backpropagation: This is a gradient-
descent algorithm that iteratively adjusts the weights of an
artificial neural network (ANN) model in order to minimize
the error between the predicted network output and the desired
pairwise preferences over the given data instances. The error
is calculated using the Rank Margin function. Given a pair
of data samples A and B, with A � B (A preferred over
B) the function yields 0 if the network output for A (i.e.,
fA) is more than one unit larger than the network output for
B (i.e., fB) and 1 − (fA − fB) otherwise. The total error
is averaged over the complete set of pairwise preferences in
the training set. The ANN training continues until the error is
below a certain threshold or the specified number of epochs
(iterations) is reached [17]. The topology of the ANN, the
number of epochs, the termination threshold, and the learning
rate may be specified by the user in advanced mode or via
the API. In PyPLT, the algorithm was implemented using the
TensorFlow library.

3) RankNet: RankNet [18], as implemented in PyPLT, is
an extension of the ANN backpropagation algorithm that uses

7http://scikit-learn.org/

a probabilistic cost function to handle ordered pairs of data.
As with backpropagation, the algorithm optimizes the error
function by adjusting the weights of an ANN model at each
iteration until the specified number of epochs is reached.
However, RankNet uses the binary cross-entropy function [18]
as the error function. As with the other algorithms, the network
topology and algorithm parameters may be specified by the
user in the advanced mode or via the API. In PyPLT, the
algorithm was implemented using the Keras8 library.

F. Model Evaluation

Models may be trained using the complete dataset (no vali-
dation); in this case, performance is assessed as the percentage
of correctly classified training pairs. It is a common machine
learning practice, however, to test the generality of the results
using an evaluation method. In the advanced mode and via
the API, PyPLT allows the user to train without validation
or choose between the two popular methods of evaluation
described below. In the beginner mode, Holdout is used by
default.

1) Holdout: This method trains the model on a given
proportion of the dataset (e.g., 70%) and then tests the model
on the remaining proportion of the dataset (e.g., 30%). The
proportions can be specified in the advanced mode or via the
API; in the beginner mode, the training proportion is fixed to
70%.

2) K-Fold Cross Validation: This method trains a number
of models using different folds (train-test partitions) of the data
and considers the average accuracy of the models across these
folds. The dataset may be split into folds either automatically
by specifying the k number of folds or manually by uploading
a file that maps each sample in the dataset to a fold.

G. Visualisation of Results and Trained Models

When running an experiment via the GUI, a progress bar
and training report are displayed during execution. Upon
completion, a report with the experiment’s details and its
results is shown to the user. Users can also save the experiment
report and the model (for a given data fold, if applicable) to a
human-readable CSV file, either via the GUI or via the API.

IV. BENCHMARK TESTS

This section, evaluates the predictive capacity of PyPLT’s
algorithms on two affective datasets (Section IV-A) and de-
scribes a user study on PyPLT’s usability (see Section IV-B).

A. Efficiency and Modelling Accuracy

In order to showcase the efficiency and accuracy of PyPLT
in deriving computational models from data, we test its al-
gorithms on two affective datasets: the Sonancia audio clip
dataset [19] and the DEAP dataset [20]. The Sonancia dataset
contains crowdsourced pairwise preference annotations of
arousal, tension and valence with respect to audio clips which
are described by 387 features extracted from the openSMILE
tool [21]. The DEAP dataset contains rating-based annotations

8https://keras.io/

TABLE I
HIGHEST CROSS-VALIDATION ACCURACY AND CORRESPONDING

COMPUTATION TIME (IN BRACKETS) ACHIEVED USING EACH AVAILABLE
ALGORITHM ON THE SONANCIA AND DEAP DATASETS.

Sonancia DEAP
RankSVM 70.5% (1.1 sec) 94.5% (123.7 sec)
ANN backpropagation 69.6% (2.7 sec) 55.1% (30.7 sec)
RankNet 72.7% (2.1 sec) 67.4% (75.1 sec)

of music videos in terms of arousal, valence, like/dislike,
dominance and familiarity. For this paper, we use a second-
order data processing method [1], [2] to derive ordinal labels
from ratings and a set of 7 physiological features (4 features
of heart rate and 3 features of skin conductance) describing
the annotators’ reaction to the videos—as derived in a recent
study [22]. All experiments in this paper consider the arousal
dimension of the annotations for both datasets: 671 datapoints
for Sonancia and 17, 653 datapoints for DEAP. The baseline
accuracy for Sonancia (assuming the most common rank is
always chosen) is 63.7%, while for DEAP it is 50%.

All of the experiments ran on a 64-bit Windows computer
with 16GB of memory, a Core i7-8700 CPU at 3.20GHz,
and an NVIDIA GeForce GTX 1060 (6GB) graphics card.
We compare computation times as well as model performance
when applying the three different algorithms in PyPLT over
these two datasets; 3-fold cross validation was used to evaluate
the models. Reported results are based on the best hyper-
parameter set per algorithm and task, after extensive explo-
ration. Furthermore, for each setup, the ANN-based algorithms
ran 10 times due to their non-deterministic nature and the
average performance was considered. Table I reports the best
performances achieved together with the computation time it
took to execute the corresponding experiment.

Table I shows that PyPLT was able to construct fairly ac-
curate models on both datasets, with one exception. While all
three algorithms performed similarly on the Sonancia dataset
(with cross-validation accuracies hovering around the 70%
mark), the algorithms showed more variation in modelling
capacity on the DEAP dataset. The most accurate models
for DEAP were achieved using RankSVM (with a cross-
validation accuracy of almost 95%) whereas ANN backpropa-
gation yielded the least accurate models. This result highlights
the importance of exploring various setups, algorithms and
parameters when deriving models from real data—a process
which is facilitated by the various options in the tool’s GUI.

Table I also shows that the computation speed of PyPLT ex-
periments is generally quite fast, although it is clearly affected
by the dataset size: the execution of every Sonancia-based
experiment lasted under 3 seconds, while for the DEAP-based
experiments execution time reached 2 minutes. Interestingly,
RankSVM was much faster than other algorithms in Sonancia,
while the opposite is true in the larger DEAP dataset.

B. Usability

To test the usability of the interface, users of varying levels
of experience with the tool were timed as they carried out a

1 2 3 4 5 6
Task

0

50

100

150

200

250

300

Av
er

ag
e

Ti
m

e
on

 T
as

k
[s

ec
]

Novice Users Experienced Users

Fig. 5. Average time on task for novice and experienced participants.

predefined set of tasks using the toolbox in both its modes—
beginner and advanced—on a given dataset (i.e., the Sonancia
dataset used in IV-A). The set of tasks assigned for each mode
were designed to be incremental in terms of difficulty, and built
on previous tasks. Six tasks were given to testers in total. The
first three tasks (1-3) used the beginner interface, and included
running a different PL algorithm and adding more complexity
in each task (in task 2 turning on automatic feature extraction;
in task 3 also using SFS). Tasks 4-6 used the advanced
interface, and required more customization but followed the
same iterative complexity as tasks 1-3 (i.e., adding automatic
feature extraction in task 5 and SFS in task 6).

After completing the assigned tasks, the participant an-
swered a brief usability questionnaire: a binary adaptation of
the Post-Study System Usability Questionnaire (PSSUQ) [23]
in which each of its 19 Likert items were instead presented
as a question with three possible answers: “Yes”, “No”, and
“I don’t know/Not relevant”. For every case, a “Yes” answer
indicates good usability practice, whereas “No” indicates a
negative user experience.

The data was collected from eight participants in total (1
female; 7 males) aged between 21 and 61 (mean age 31.5).
We compare the difference in task completion performance
between two types of participants: novice users and experi-
enced users. Novice users are considered to be those who
answered “No, never” to the question “Have you ever used
the Preference Learning Toolbox (prior to this experiment)?”
while the experienced users are considered to be those who
answered “Yes, a few times”, “Yes, many times”, or “Yes, I
consider myself an expert”. In general, the novice users were
also vastly less familiar with machine learning and preference
learning than the experienced users.

Fig. 5 shows the average time taken by each type of user
(novice and experienced) to complete each task in both PyPLT
modes. Note that the computation time taken to execute the
experiments was excluded from these results. From these re-
sults, it is evident that none of the tool’s tested features require
an enormous effort to set up. On average, an experiment could
be set up reasonably quick (in under 5 minutes) by both novice

N1 N2 N3 N4 E1 E2 E3 E4
 Novice Users Experienced Users

0
2
4
6
8

10
12
14
16
18

PS
SU

Q
 R

es
po

ns
es

Yes No I don't know / Not relevant

Fig. 6. Responses (y-axis) to the 19 questions of the Post-Study System
Usability Questionnaire (PSSUQ) [23] across all participants (x-axis).

and experienced users. With the exception of the very first task,
the tasks in the beginner mode took users less time to complete
than those in advanced mode. The novice users were always
slower to complete the tasks than the experienced users, on
average. While task 3 was more complex than task 2, which
was more complex than task 1, we observe that the time it
took both novice and experienced users dropped in subsequent
tasks. This suggests that the experiments became easier to set
up as the users became more acquainted with the interface.
This is corroborated by the responses to the questionnaire, in
which all experienced users and 3 of 4 novice users responded
that it was “easy to learn to use” the software. Only task 5 took
longer to complete than the previous for either user type as it
involved setting up several pre-processing options (automatic
feature extraction, normalization, and data shuffling), each
with its own parameters. In fact, this task took the longest
to complete on average across modes and user types.

Figure 6 shows the number of positive, negative and neutral
responses from each participant across all 19 questions of the
post-study questionnaire. The vast majority of responses are
positive, as 7 of 8 participants answered “Yes” to more than
75% of the questions. Specifically, all users of both types
responded that they were satisfied with how easy it is to
use PyPLT, and were able to complete the tasks quickly and
effectively using the tool. Moreover, they all agreed that it
was easy to find the information they needed and that the
organization of information on the software screens was clear.
They also unanimously liked using the GUI and were overall
satisfied with the toolbox.

On the negative aspects of usability, only one novice user
(N1) was underwhelmed by the use of PyPLT, and responded
“No” to 10 of the 19 questions including “Was it simple to use
this system?”, “Did you feel comfortable using this system?”,
and “Was the information provided for the system easy to
understand?”. N1 informally expressed his frustration with the
formatting parameter menu for loading the datasets, which
he felt was slightly unclear. Furthermore, some users of both

types were confused by a clash between scrollable areas in the
pre-processing tab in advanced mode, as some of the options
in the tab were not easily accessible when using the mouse
wheel to scroll down the tab. This detail likely contributed
to the prolonged amount of time taken by both user types to
complete the second task in the advanced mode (see Fig. 5).

V. CONCLUSIONS AND FUTURE WORK

This paper presented a Python-based Preference Learning
Toolbox, an all-in-one software application and package for
the modelling of ordinal data. The toolbox contains a variety
of popular algorithms and methods for each stage of the
modelling process, including pre-processing, feature selection
and preference learning. The toolbox also allows for deep
learning and is equipped with an autoencoder for automatic
feature extraction. The toolbox may be used via its GUI or
API, the former of which offers a simplified beginner mode
for novice users as well as an advanced mode with detailed
setup options for more experienced users. The setup details,
results summary, as well as the SVM or ANN models derived
using the tool may easily be stored for future use. Experiments
reported in this paper show that PyPLT is generally easy to
use and able to yield accurate models from real affect data.

The tool is open source and has been designed to facil-
itate further development and improvement. Along with the
addition of new algorithms, methods and other options, we
envisage that future work on PyPLT will include extending
the tool to allow saved (pre-trained) models to be loaded into
the toolbox to predict new instances and continue training.
Another important extension would be to handle 2D data
such as images and videos as input, which would require
enhancements to the deep learning capabilities of PyPLT
by integrating convolutional layers with ANN models. As
revealed in the usability study, the GUI could be further
refined, by making the formatting parameter menu for loading
datasets and the scrolling functionality in the pre-processing
tab (advanced mode) more intuitive.

The PyPLT website gives access to the latest distributions of
the software and further documentation on how to use the tool
through the beginner or advanced interface. Further guidance
is also provided for developers seeking to modify or improve
the software, which is version-controlled using Git.

Given the importance of ordinal labeling and annotation
for subjective constructs such as emotion [1], [2] we aspire
that the Python Preference Learning Toolbox will become a
widely used and accessible software to researchers of affective
computing and human computer interaction at large.

ACKNOWLEDGMENTS

We thank Maltco Lotteries and the H2020 project Com
N Play Science (project no: 787476) which co-funded the
development of the PyPLT. We also thank Héctor P. Martı́nez,
Vincent Farrugia and Phil Lopes for their help with migrating
from the legacy version; Konstantinos Makantasis for his
contributions to PyPLT; and all of the participants who tested
and provided feedback on the tool at various stages.

REFERENCES

[1] G. N. Yannakakis, R. Cowie, and C. Busso, “The ordinal nature of emo-
tions,” in Proceedings of the Intl. Conference on Affective Computing
and Intelligent Interaction. IEEE, 2017, pp. 248–255.

[2] ——, “The ordinal nature of emotions: An emerging approach,” IEEE
Transactions on Affective Computing, 2018.

[3] V. E. Farrugia, H. P. Martı́nez, and G. N. Yannakakis, “The preference
learning toolbox,” arXiv preprint arXiv:1506.01709, 2015.

[4] J. Fürnkranz and E. Hüllermeier, Preference learning. Springer, 2010.
[5] S. Kaci, Working with preferences: Less is more. Springer Science &

Business Media, 2011.
[6] T. Joachims, “Optimizing search engines using clickthrough data,” in

Proceedings of the SIGKDD Intl. Conference on Knowledge Discovery
and Data Mining. ACM, 2002, pp. 133–142.

[7] ——, “Training linear SVMs in linear time,” in Proceedings of the
SIGKDD Intl. Conference on Knowledge Discovery and Data Mining.
ACM, 2006, pp. 217–226.

[8] J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, “MEKA: a
multi-label/multi-target extension to WEKA,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 667–671, 2016.

[9] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas,
“Mulan: A java library for multi-label learning,” Journal of Machine
Learning Research, vol. 12 (Jul), pp. 2411–2414, 2011.

[10] F. Eibe, M. A. Hall, and I. H. Witten, The WEKA workbench. Online
Appendix for “Data Mining: Practical Machine Learning Tools and
Techniques”, 4th ed. Morgan Kaufmann, 2016.

[11] P. Gupta, A. Hetzer, T. Tornede, S. Gottschalk, A. Kornelsen, S. Oster-
brink, K. Pfannschmidt, and E. Hüllermeier, “jPL: A java-based software
framework for preference learning,” in Proceedings of the LWDA 2017
Workshops: KDML, FGWM, IR, and FGDB, September 2017.

[12] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description
length, and helmholtz free energy,” in Advances in Neural Information
Processing Systems, 1994, pp. 3–10.

[13] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv e-prints, p. arXiv:1412.6980, Dec 2014.

[14] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in
feature selection,” Pattern recognition letters, vol. 15, no. 11, pp. 1119–
1125, 1994.

[15] C. Cortes and V. Vapnik, “Support-vector network,” Machine Learning,
vol. 20, pp. 273–297, 1995.

[16] R. Herbrich, T. Graepel, and K. Obermayer, “Support vector learning for
ordinal regression,” in Proceedings of the Intl. Conference on Artificial
Neural Networks, 1999.

[17] H. P. Martı́nez, Y. Bengio, and G. N. Yannakakis, “Learning deep phys-
iological models of affect,” IEEE Computational Intelligence Magazine,
vol. 8, no. 2, pp. 20–33, 2013.

[18] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. N. Hullender, “Learning to rank using gradient descent,” in
Proceedings of the Intl. Conference on Machine learning, 2005, pp.
89–96.

[19] P. Lopes, A. Liapis, and G. N. Yannakakis, “Modelling affect for horror
soundscapes,” IEEE Transactions on Affective Computing, 2017.

[20] S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi,
T. Pun, A. Nijholt, and I. Patras, “DEAP: A database for emotion
analysis; using physiological signals,” IEEE Transactions on Affective
Computing, vol. 3, no. 1, pp. 18–31, 2012.

[21] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent developments
in openSMILE, the Munich open-source multimedia feature extractor,”
in Proceedings of the Intl. Conference on Multimedia. ACM, 2013, pp.
835–838.

[22] D. Melhart, K. Sfikas, G. Giannakakis, G. N. Yannakakis, and A. Liapis,
“A study on affect model validity: Nominal vs ordinal labels,” in
Proceedings of the IJCAI workshop on AI and Affective Computing,
2018.

[23] J. R. Lewis, S. C. Henry, and R. L. Mack, “Integrated office software
benchmarks: A case study.” in Interact, 1990, pp. 337–343.

