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Abstract

This paper describes computational processes which
can simulate how human designers sketch and then iter-
atively refine their work. The paper uses the concept of a
map sketch as an initial, low-resolution and low-fidelity
prototype of a game level, and suggests how such map
sketches can be refined computationally. Different case
studies with map sketches of different genres showcase
how refinement can be achieved via increasing the res-
olution of the game level, increasing the fidelity of the
function which evaluates it, or a combination of the two.
While these case studies use genetic algorithms to auto-
matically generate levels at different degrees of refine-
ment, the general method described in this paper can be
used with most procedural generation methods, as well
as for AI-assisted design alongside a human creator.

Procedural content generation has traditionally been used in
commercial games to create novel player experiences in ev-
ery playthrough. More recently, generative algorithms have
also been used during game development in an effort to
speed up the design of content, especially for optional con-
tent such as trees with Speedtree (IDV 2011) or for tedious
tasks such as terrain generation with Worldmachine (Schmitt
2005). There is increasing interest, both in academia and
in the game industry, for computational creators which can
work alongside human creators in a mixed-initiative man-
ner (Yannakakis, Liapis, and Alexopoulos 2014), or which
exhibit human-like design patterns (Dahlskog, Togelius, and
Björk 2015) in order to be trackable, familiar and suggestive
to their audience (be they human players or designers).

As a stepping stone towards expressive generators which
exhibit a human-like design process, this paper proposes a
generative approach which designs game levels via itera-
tive refining. The paper builds on previous work on map
sketches, which themselves borrow from human sketching
as a design paradigm. Map sketches are low-resolution,
high-level abstractions of game levels, and contain the bare
minimal components which can describe a level of a game
genre. As a design medium, a map sketch follows several of
the properties of sketches according to Hugh Dubberly, as
attributed by Buxton (2007): “A sketch is incomplete, some-
what vague, a low-fidelity representation. The degree of fi-
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delity needs to match its purpose, a sketch should have ‘just
enough’ fidelity for the current stage in argument building.”

Sketching as a paradigm has a long history in computer-
aided design, as exemplified by Sketchpad in the 1960s
(Sutherland 1963). The current paper builds on the notion
of sketching at varying degrees of fidelity with the final
game level, increasing the fidelity as the design matures. In-
creasing the level of detail in a design process necessitates a
change in representation (Grace, Gero, and Saunders 2014)
which however transfers design knowledge from one itera-
tion to the next (Goel 1997). The goal of this paper is to
emulate, computationally, the iterative process of refining an
idea, a product or an artwork which is followed by most cre-
ative people — from designers and artists to engineers and
academics. The case studies in this paper iteratively refine
game levels by using previously generated rough sketches as
initial seeds for a constrained optimization algorithm which
expands and adds details to the rough sketch, or use more
accurate evaluations for improving its quality. On the one
hand, iteratively refining procedurally generated content can
benefit the computational processes themselves; this is es-
pecially true for the search-based methods used in this pa-
per, where iterative evolution narrows the search space and
makes optimization more efficient. On the other hand, using
human-like design paradigms (such as increasing the reso-
lution of a sketch or the simulation fidelity) makes the gen-
erator more transparent to human designers, which in turn
allows them to better interact with it either at the code level
or via a mixed-initiative design interface.

Related Work
As noted above, using sketching as a design paradigm when
creating computer-aided design tools has a long history, dat-
ing back to Sutherland (1963). Another human-like design
process popular in mixed-initiative design research is that of
a dialog (Novick and Sutton 1997), where computer and hu-
man share a task initiative (who starts the conversation), a
speaker initiative (when to speak) and an outcome initiative
(who determines when the discussion is over). The iterative
refining processes discussed in this paper assume that the
computer initiative is leading the process with a human se-
lecting when and what to refine, but otherwise not directly
influencing this process. However, more agency and control
can be afforded to the human user via an interface similar



to that of Tanagra (Smith, Whitehead, and Mateas 2011)
or Sentient Sketchbook (Liapis, Yannakakis, and Togelius
2013a); suggestions for such an interactive tool for refine-
ment are provided in the discussion section of this paper.

The concept of map sketches as low-detail descriptions
of game levels is arguably not new; a large portion of pro-
cedural content generation (PCG) research revolves around
small-scale level generation with local changes (Sorenson
and Pasquier 2010; Bauer, Cooper, and Popović 2013). Most
generators target specific, popular games (Pedersen, To-
gelius, and Yannakakis 2009; Togelius et al. 2010), while
the low resolution of map sketches makes them appropriate
for multiple game genres (as demonstrated in this paper).
The concept of map sketches borrows from similar concepts
such as procedural portraits (Mateas 2000), which use com-
putational systems to represent human cultural processes,
or more appropriately computational caricatures (Smith and
Mateas 2011), which purposefully distill a game design pro-
cess (to the degree of oversimplification and exaggeration)
in order to more clearly communicate “nuggets of truth”.
The work described in this paper is in several ways a com-
putational caricature of the human design process, simplified
and streamlined to the point that it becomes suggestive and
familiar to human design practitioners.

There have been several attempts at emulating the pro-
cess of iterative refining in PCG, although not always termed
as such. Sentient World (Liapis, Yannakakis, and Togelius
2013b) refines game terrain by increasing the heightmap’s
resolution to conform to patterns of a low-resolution sketch.
Hartsook et al. (2011) use a linear story as a seed for evolv-
ing a tree data structure of locations in an adventure game,
and then convert the tree into a grid-based map via construc-
tive methods. Dormans (2010) uses generative grammars to
produce missions in adventure games (which describe the
sequence of challenges in a level), which then inform the
generation of the level’s spatial arrangement via space gram-
mars. Game action sequences have also been refined with
spatial information for dungeons (van der Linden, Lopes,
and Bidarra 2013) and puzzle levels (Smith et al. 2012).

Refining Map Sketches
As an indicative sample of the ways in which human design-
ers refine their work iteratively, this paper proposes several
ways in which map sketches can be refined:

1. Increasing the resolution of the sketch, i.e. the map size
and the number of its components (tile types). This ap-
proximates the iterative refinement of artwork, where an
artist starts from a pencil sketch and refines it by adding
shading or color and eventually touches up the details.

2. Increasing the evaluation fidelity of the sketch, i.e.
moving from high-level evaluations on path connectivity
to game-specific evaluations and eventually to in-game
simulations. This approximates the iterative refinement
of engineering schematics such as a bicycle, where a de-
signer starts from a general interaction principle, then runs
computer-based simulations of a refined schema and fi-
nally builds a physical prototype to test in the real world.
Buxton (2007) covers such an example of bicycle design.

3. Expanding with multiple sketches, e.g. linking sketches
to form a larger level. The addition of more sketches may
require changes in the original sketch (e.g. re-balancing a
strategy game level if a sketch expands the map with two
more players), or it might not (e.g. if the added sketch is
an entirely new level of a Diablo dungeon). This approx-
imates the iterative refinement of a storyworld in fantasy
literature, where the author in the first book fleshes out a
portion of the world while in future books introduces new
lands, new characters, new lore and new subplots.
This paper presents three case studies which demonstrate

how the different ways of iterative refining suggested above
can be achieved in level generators. The case studies use dif-
ferent game genres as target domains, and use different ap-
proaches to move from one stage of refinement to the next.
For the sake of brevity, the case studies demonstrate refining
from a first stage (a simple, rough sketch) to a second stage
(a more elaborate or more accurate sketch) of the design pro-
cess. More stages of refinement can be added, however, as
suggested in the discussion section of this paper.

While the case studies in this paper attempt to present
different refinement methods applied on levels for differ-
ent game genres, they share a common method for gener-
ating and evaluating these levels. All case studies represent
a map sketch as an array of integers, with each integer defin-
ing the tile type of a specific map tile. All case studies use
constrained optimization to evolve feasible content (which
satisfy constraints depending on the case study) alongside
infeasible content, via a feasible-infeasible two-population
genetic algorithm (FI-2pop GA) (Kimbrough et al. 2008).
Unless otherwise noted, constraints on generated levels per-
tain to connectivity of important game-specific tiles (e.g.
weapons for a shooter game, resources for a strategy game)
via passable paths; for such constraints, the infeasible pop-
ulation of the FI-2pop GA minimizes the number of discon-
nected paths. Similarly, most case studies use the heuristics
of Liapis, Yannakakis, and Togelius (2013c) to evaluate fea-
sible levels. In short, these heuristics consist of:
• exploration as fe(SN ) which evaluates the effort made to

discover tiles in the set SN starting from other tiles in the
same set, and its balance dimension as be(SN ), i.e. if all
tiles in SN are equally difficult to find from each other.

• safe areas as fa(SN ) which evaluates the number of pass-
able tiles significantly closer to one tile in the set of SN

than other tiles in the same set, and its balance dimension
as ba(SN ), i.e. if tiles in SN have similar-sized safe areas.

• strategic resource control as fs(SN , SM ) which evaluates
whether tiles in the set of SM are significantly closer to
one tile in the set of SN than other tiles in SN , and its
balance dimension as bs(SN , SM ), i.e. whether each tile
in SN has equal nearby tiles in SM .

Refining the Map Resolution
This case study uses strategy games to demonstrate how a
map sketch can be refined by increasing its resolution. The
intended game, which informs the map’s tiles and its evalu-
ation functions, is Endless Legend (Amplitude 2014). Lev-
els for Endless Legend are laid out on a hex grid of tiles.



(a) First stage
evolved sketch

(b) Refined version of
Fig. 1a

(c) Second stage
evolved sketch

Figure 1: Map sketches for Endless Legend, at different
degrees of refining. Map sketches contain traversable land
(dark green), impassable water (dark blue), the players’
starting positions (white), and during the refinement stage
also expansion tiles (light green), glassteel (yellow) and tita-
nium (cyan) special resources.

A player can place one city per region; regions consist of
a (usually large) number of connected tiles and only one
player can control each region. Players can harvest strate-
gic resources in a region where they have a city, by building
extractors on them (regardless of their distance to the city).
Strategic resources can be used to equip powerful units and
build special structures in cities, and in the early game con-
sist of titanium and glassteel. For brevity, advanced tech-
nologies which unlock other strategic resources or which
allow travel through water are not considered in this case
study; the maps created will focus on early-game expansion.
Moreover, different types of terrain, varying terrain eleva-
tion and other features of Endless Legend will be ignored,
but can be added with more refinement stages.

First (sketching) stage: For maps at the first stage of
sketching, the minimal components of an Endless Legend
level are land tiles, water tiles (which can not be traversed
without extensive research), and the starting locations of
players. At this level of detail and with those tile types in
place, the goal of a generator is to create maps where players
do not start next to each other — allowing for some breath-
ing room and area for expansion before players engage in
border warfare. This is evaluated by F1 in eq. (1):

F1 =fe(SP ) + be(SP ) (1)

where SP is the set of players’ starting positions.
The FI-2pop GA evolves via mutation, which transforms

land tiles to sea tiles (and vice versa) or swaps the position
of adjacent tiles. When evolving a map for two players at
this stage, the best result of 20 independent runs is shown in
Fig. 1a; players start the game at opposite sides of the map
and a large body of water blocks direct access to one another.

Second (refining) stage: Evolution at the first stage has
secured a rudimentary map sketch, which can be refined by
increasing the map’s resolution at the second stage; in this
case study, the map dimensions are tripled as each hex in the
first stage sketch is essentially represented as 7 hexes in the
second stage sketch (see Fig. 1b). With more granularity and
free space due to a larger map, more details can be added.

New tile types are added at the second stage: glassteel and
titanium tiles (representing those strategic resources), and
expansion tiles. Expansion tiles represent the center of a re-
gion defined by any land tile which is closer to the expansion
tile than to any other expansion tile or player starting loca-
tion (similar to Voronoi diagrams); players can settle regions
in Endless Legend by building cities within their borders.

Placement of titanium, glassteel and expansion tiles can
be optimized using genetic search; in the current study, the
best evolved sketch of the first stage defines and constrains
the topology of all sketches of the second stage. Essentially,
the genetic algorithm focuses on placing titanium, glassteel
and expansion tiles while leaving sea, land and starting lo-
cation tiles intact. Despite the larger map size, the number
of parameters to be optimized (i.e. coordinates of titanium,
glassteel and expansion tiles) remains manageable and opti-
mization is going to be faster and more efficient. Moreover,
since the best first stage sketch is feasible (as is its refined
version), it is very unlikely that any refined sketch will be in-
feasible. For the second stage, sketches are evolved to form
regions of similar (large) size with a balanced number of
strategic resources, as evaluated by F2 in eq. (2).

F2 =fs(SP∪SE , SG∪SM ) + bs(SP∪SE , SG∪SM )

+ fa(SP∪SE) + ba(SP∪SE) (2)

where SE is the set of expansions; SG is the set of glassteel
resource tiles; SM is the set of titanium resource tiles. Note
that fa and ba have a lowest safety threshold of 0 (i.e. any tile
even marginally closer to one expansion or starting location
is considered part of its safe area).

The best evolved sketch of the second stage of refining,
using the sketch of Fig. 1b as a seed, is shown in Fig. 1c;
regions are shown in different colored hex borders. In the
sketch of Fig. 1c, each region has at least one titanium or
glassteel, although they are not distributed entirely fairly
(compare e.g. the bottom-left region with one glassteel ver-
sus the top-right region with three glassteel). The player
starting at the top can immediately expand to two regions,
while the player at the bottom can expand to three; both
players can immediately expand to the resource-rich top-
right region, which is expected to cause border tension.

Results: The best sketches in 20 independent runs for the
first stage had on average 33% of the map covered by water
and a passable path branching factor of 4.62 (out of 6); while
maps included peninsulas and narrow straits, there were also
large open areas of land as well. The best sketches for the
second stage had each region spanning on average 82 tiles.
Interestingly, regions centered on expansion tiles spanned
95 tiles on average while regions of player starting locations
spanned 55 tiles; as the previous stage optimizes exploration
of player locations, those are placed in areas cut off from the
rest of map with few connected (and safe) passable tiles.

Refining the Approximations of Gameplay
This case study uses levels for the MiniDungeons game to
demonstrate how a map sketch can be refined by improving
the fidelity of its evaluation. These levels will be optimized
at the first stage according to the general heuristics of Liapis,



Yannakakis, and Togelius (2013c) while, at the second stage,
on more game-dependent and accurate evaluations based on
simulated gameplay. MiniDungeons is best described as a
roguelike puzzle game where a player controls a hero’s jour-
ney through a dungeon (Holmgård et al. 2014); its levels are
small and its gameplay relatively simple. A MiniDungeons
level contains an entrance and an exit, immobile monsters
which deal a random amount of damage before dying in a
fight with the hero, treasures which increase the score when
collected and potions which immediately heal an injured
hero when collected. The only stochasticity of gameplay is
in monster damage: each monster deals between 5 and 14
hit points (HP) of damage of a hero’s total 40 HP. In order
to model human players, several procedural personas were
developed to emulate archetypical decision making styles
(e.g. kill all monsters). This case study will use procedu-
ral personas for creating synthetic playtraces at the second
stage of generation; included personas are a baseline per-
sona which is rewarded for reaching the exit (thus tending to
go on the shortest path to the exit), a monster killer which is
rewarded for each monster slain and exit reached and a trea-
sure collector which is rewarded for each treasure collected
and exit reached. Previous work which used such personas
as critics of a constrained evolutionary algorithm (Liapis et
al. 2015) did not account for a prior sketching stage, but is
largely an inspiration for the current case study.

First (sketching) stage: Unlike the other case studies in
this paper, MiniDungeons levels on both stages of refine-
ment use the same map size (12 by 12 tiles) and the same tile
types: empty, walls, monsters, potions, treasures, entrance
and exit. All maps have the same number of monsters, po-
tions and treasures, and only one entrance and one exit. Both
stages use an FI-2pop GA to evolve the levels via mutation
(which swaps adjacent tiles and transforms walls to empty
tiles and vice versa). The first stage evolves MiniDungeons
levels via F1 in eq. (3), aiming to hide the exit in a remote
location, disperse monsters throughout the level and place
treasures or potions near monsters (as a reward); in feasible
levels all non-empty, non-wall tiles must be connected.

F1 =fs(SM , ST∪SP ) + bs(SM , ST∪SP )

+ fa(SE∪SX∪SM ) + ba(SE∪SX∪SM )

+ fe(SE∪SX) + be(SE∪SX) (3)

where SE is the set of entrances; SX is the set of exits; SM ,
ST , SP is the set of monsters, treasures, potions respectively.

The best evolved first stage sketch among 20 indepen-
dent runs is shown in Fig. 2a; the patterns targeted by F1

are present: the exit is reachable from the entrance via two
winding paths, and monsters are faraway from each other,
but near treasures and potions — although not necessarily
blocking the path of a hero who tries to collect them.

Second (refining) stage: Although it targets several desir-
able patterns, F1 focuses on path distance without account-
ing for the game’s rules or the hero’s survival. Using the
evolved levels of the first stage as an initial seed, the evalua-
tions and constraints can be refined to account for the game’s
rules by using procedural personas to play through a level

(a) 1st stage ev. sketch

(b) 2nd stage
sketch evolved

for FMK

(c) 2nd stage
sketch evolved

for FTC

(d) 2nd stage
sketch evolved

for DMK

(e) 2nd stage
sketch evolved

for DTC

Figure 2: Map sketches for MiniDungeons, at different de-
grees of refining. Fig. 2b-2e include a heatmap of the pro-
cedural persona evaluating them: monster killer or treasure
collector (MK or TC notation respectively).

and evaluate whether it satisfies the persona’s idiosyncratic
priorities. The baseline persona is used to test if the level
satisfies a playability constraint; that constraint is satisfied if
the baseline persona reaches the exit in a worst-case scenario
where monster damage (normally random) is set at maxi-
mum value. Another constraint that the baseline persona ex-
plores at least 12 tiles before reaching the exit precludes the
entrance and exit being too close. The other personas are
used to evaluate feasible individuals which satisfy all con-
straints (including connectivity constraints of the first stage).
The monster killer persona can evaluate levels on the num-
ber of monsters it kills and exits it reaches (FMK), while the
treasure collector persona can evaluate levels on the number
of treasures it collects and exits it reaches (FTC). To cater for
the stochasticity of combat, fitnesses are averaged from 10
simulations with random monster damage. FMK and FTC

evaluate how well the level accommodates the goals of that
persona. However, trivial solutions can be found for these
goals (by e.g. placing all treasures on a line between en-
trance and exit). Instead, decision making assumes a certain
risk-reward mechanism; this risk can be measured via the
standard deviation of monsters killed and exits reached for
the monster killer (DMK) and the standard deviation of trea-
sures collected and exits reached for the treasure collector
(DTC) across 10 independent simulations.

Figure 2 shows the best results of evolutionary runs target-
ing different fitnesses. Every evolutionary run used the entire
population of the first stage as the initial seed; since con-
straints are refined in the second stage via playability checks
with a baseline persona, some previously feasible individu-
als become infeasible. Additionally, the best map of the first
stage may receive low fitness with the new evaluations; for
instance, the (previously best) map in Fig. 2a receives a fit-
ness of 0 for DTC as the treasure collector can gather all the



(mostly unguarded) treasures without ever dying. Evolved
maps for DMK and DTC are quite different from Fig. 2a,
although some patterns (e.g. entrance placement) largely re-
main. In contrast, the map of Fig. 2a is optimal for FTC so
evolution does not improve it; Fig. 2c is the same as Fig. 2a.

Results: After the first stage of evolution, the best sketches
of 20 independent runs were tested with the refined, sim-
ulation-based evaluations using procedural personas (i.e. ar-
tificial agents): a monster killer playing through them killed
on average 85% of monsters, drank all potions and died be-
fore reaching the exit in 90% of the simulations; a treasure
collector gathered on average 98% of treasures and died in
2.5% of simulations. After the second stage of refinement, in
sketches evolved towards FMK a monster killer died in half
of the simulations and killed on average 99% of monsters;
in those evolved towards FTC a treasure collector never
died and collected all treasures. In sketches evolved towards
DMK a monster killer died in 71% of the simulations and
killed on average 78% of monsters; in those evolved towards
DTC a treasure collector died in 31% of the simulations and
collected on average 79% of treasures.

Refining via Multiple, Linked Sketches
This case study uses archetypical first person shooter games
to demonstrate how refinement can occur by adding extra
sketches to the original, refining both in the process. Un-
like previous case studies, levels created by this refinement
process are not for an actual game (although most shooters
revolving around multiplayer deathmatch sessions would fit
the description). This genre of games involves two or more
teams competing to score more kills against their opponents
by using powerful weapons which can be picked up at spe-
cific locations in the level. Players lose health when shot, and
upon dying reappear (re-spawn) at the team’s spawn point;
wounded players can heal by picking up healthpacks at spe-
cific locations in the level. This case study aims to create a
two-floor shooter level; the first stage of sketching defines an
initial level architecture for the 1st floor and ways of reach-
ing the 2nd floor (stairs), while the second stage adds another
sketch (the 2nd floor) which is linked to the first stage sketch,
and adapts both sketches with more shooter-specific game-
play tiles such as weapon pickups and team spawn points.

First (sketching) stage: The first stage of sketching builds
an initial level architecture for the 1st floor of the shooter
level using empty tiles and walls. In anticipation of the 2nd

floor during the refining stage, stair tiles which connect the
two floors are also placed. First stage sketches evolve via F1

of eq. (4), to place stairs in remote locations (allowing differ-
ent entry points to the 2nd floor, when it is added). Moreover,
F1 ensures that stairs will be hidden behind extensive walls
and thus defensible (limiting opponents’ line of sight); stairs
are expected to be chokepoints for reaching the 2nd floor.

F1 =fe(Ss) + be(Ss) (4)

where Ss is the set of stairs.
The best first stage sketch among 20 independent runs is

shown in Fig. 3a: stairs are far apart, often in corridors, with
several “rooms” (formed from extended walls) in-between.

(a) 1st stage
ev. sketch

(b) Refined version of
Fig. 1a

(c) Second stage evolved
sketch

Figure 3: Map sketches for a multi-floor shooter level, at
different degrees of refining. Map sketches contain walls
(black), passable tiles (gray), open-air tiles (white), stairs
(green), spawn points (magenta), weapons (orange) and
healthpacks (cyan).

Second (refining) stage: The first stage only created a ba-
sic architectural sketch of the 1st floor, in preparation of a
2nd floor; the second stage adds a sketch for the 2nd floor
and can now estimate the gameplay of the full level. The
second stage introduces the following game-specific tiles,
which are the core components of shooter gameplay: team
spawn points where teams start from and players reappear
when they die, weapons where players can pick up powerful
weapons, and healthpacks where players can heal when in-
jured. Moreover, the second floor requires that a new tile
with architectural properties is introduced: open-air tiles
signify areas where players can drop to (or shoot at) the floor
below — essentially holes in the architecture which players
can not cross except by dropping to the floor below1.

The 1st floor of the previous stage of sketching informs,
to a degree, the appearance of the two-floor level before it
is further evolved. The wall tiles and stairs are frozen, and
cannot be changed (or moved) during refining. Moreover,
while the 2nd floor starts with no wall tiles, the closed spaces
created by walls in the first stage sketch determine where
open-air tiles are placed on the 2nd floor. Any 1st floor seg-
ment (i.e. chunk of passable tiles isolated from other areas
via chokepoints such as doors and corridors) which does not
contain a flight of stairs creates an open-air section in the 2nd

floor above it (see Fig. 3b for an example). This constructive
algorithm maintains the appearance of defensible “rooms”
where stairs are located while allowing players between dif-
ferent floors to interact in “arena” parts of the level where
access to the second floor is not easy.

Since this second stage introduces gameplay tiles, evolu-
tion must target several objectives. The FI-2pop GA ensures
satisfaction of a constraint that all gameplay tiles must re-
main connected2. Feasible individuals evolve towards plac-
ing spawn points of opposing teams far away from each
other, placing weapon pickups faraway from those spawn

1In contrast, passable tiles on both floors assume a solid floor
where players can walk through (including balconies or bridges).

2For instance, a player must be able to reach a healthpack by
jumping down from the 2nd floor via an open-air tile, but must also
be able to get back to the 2nd floor from there via a stair.



points (and from each other) in order to prompt move-
ment through the level, and distributing healthpacks evenly
throughout the level so that all players have a chance of
healing up and getting back to the fight. Therefore, second
stage sketches evolve towards F2 in eq. (5); the two fe (and
be) heuristics put more emphasis on spawn points being far
away and a lesser emphasis on weapons being far away.

F2 =fa(SH∪SP ) + ba(SH∪SP ) + fe(SP )

+ be(SP ) + fe(SW∪SP ) + be(SW∪SP ) (5)

where SP is the set of team spawn points; SH is the set of
healthpacks; SW is the set of weapon pickups.

Fig. 3c shows the best evolved individual of the second
stage, seeded from the sketch of Fig. 3b. While the place-
ment of the stairs and walls of the first stage is intact, more
walls were added to block paths between stairs on the 1st

floor; stairs are now connected only via the 2nd floor. The
first team team spawns on the 2nd floor, while the second
team spawns on the 1st floor. Interestingly, the first team
controls more area on the 1st floor, as its members can drop
down through the open-air section next to their spawn point.
The second team can access the 2nd floor via a nearby stair,
and can control half of it easily since its members can aim
at the first team’s members who navigate the arena of the 1st

floor. The first team can access that area of the 2nd floor as
well, but only through a faraway stair hidden in a corridor.

Results: The best sketches in 20 independent runs for the
first stage had an average of 2.75 stairs (with a maximum of
4 stairs), with 38% of the 1st floor tiles being walls and 27%
being corridors (i.e. deadends, crossroads and chokepoints).
In refined versions of these sketches, 13% of 2nd floor tiles
were open-air tiles on average (but 6 of 20 sketches had no
open-air tiles). The best sketches for the second stage had
walls on 44% of 1st floor tiles and 20% of 2nd floor tiles,
with corridors on 26% of 1st floor tiles and 16% of 2nd floor
tiles. Refinement seems to disperse wall tiles on both floors,
although the first floor is more cramped (narrow winding
passages) since walls of the first stage sketch are retained.

Discussion
The three case studies described above suggest three indica-
tive ways of refining map sketches by increasing the level of
detail either on the map level (by increasing the map size or
by combining multiple sketches) or on the evaluation level
(by improving fidelity with the end-product playthrough of
humans). Moreover, these case studies provide distinct ex-
amples of how the first stage of sketching can inform the
second stage of refining: in maps for Endless Legend, all tile
types optimized on the first stage are frozen in place dur-
ing the second stage; in MiniDungeons levels, all tile types
are available (and can be manipulated) at both stages; in
shooter levels, certain tiles of the previous stage (e.g. walls)
are frozen in place but can be enhanced (by e.g. adding more
walls) based on the new needs of a refined level. Finally, the
case studies have demonstrated how even simple evaluations
(such as exploration and safety) of Liapis, Yannakakis, and
Togelius (2013c) can be adapted and reused with alternate
pathfinding methods such as the hex-based paths of Endless

Legend maps or the multi-floor paths of FPS levels, with
stairs for moving up and open-air tiles for dropping down.

The refinement step allows generators to add level details
(such as new tile types) iteratively, working in a similar way
to how humans move from the big picture to the minutiae.
However, increasing the map size, the number of tile types,
or the fidelity of evaluations incurs a computational burden
and slows down evolution. To be of use in AI-assisted design
tools, certain shortcuts or interface changes must be made,
either to provide faster feedback (by e.g. limiting the geno-
type to only those elements that can change) or to change
the human-computer co-creation paradigm to a more asyn-
chronous process (by e.g. humans and machines perform-
ing the refining stages individually and presenting each other
their verdicts). Another issue with the iterative process of re-
fining is that variation of results is purposefully limited; for
instance, Endless Legend maps of the same population look
similar during the refining step, since only a handful of tiles
change between them. Running evolution “from scratch”
rather than in stages creates more variation but likely strug-
gles to find adequate results in a much larger search space.
Finally, converting an evolved first stage sketch to a sec-
ond stage seed for refinement (in the case of Endless Legend
maps and shooter levels) was ad-hoc based on expert knowl-
edge; in other types of levels (or in other refinement stages)
such a conversion may be less straightforward.

While the case studies in this paper used constrained op-
timization via genetic algorithms for both sketching and re-
fining stages, the general process of iterative refining lends
itself well to many different PCG methods. For instance,
while a rough sketch of a platformer level can be produced
with stochastic search, more details can be added via An-
swer Set Programming as implemented in Tanagra (Smith,
Whitehead, and Mateas 2011) by converting the platforms
of the rough sketch (and the desired properties of the refined
sketch) into constraints. Similarly, in levels such as those
of MiniDungeons but with lock and key puzzles, planning
approaches are likely more robust in ensuring all precon-
ditions for completing a level are met. Constructive meth-
ods can also be applied on different stages of the refinement
process; arguably, converting first stage sketches to second
stage large maps for Endless Legend already uses construc-
tive methods, which could be enhanced to e.g. ensure all re-
gions have exactly the correct number of strategic resources.

It should be noted, however, that not all generators can
be used with all of the refining processes described in this
paper. For instance, increasing the fidelity of evaluation as-
sumes generators which either evaluate (e.g. search-based
methods) or test for playability (e.g. generate-and-test and
constraint-based methods). Similarly, increasing the reso-
lution of a map sketch implicitly assumes generators able
to consume and produce spatial arrangements of maps, and
would not be applicable to e.g. a grammar-based generator.

Case studies in this paper covered only two stages of re-
finement, a first (sketching) stage and a second (refining)
stage. However, many iterative steps of refining (of vari-
ous sorts) could be added to the examples of this paper.
For instance, the larger Endless Legend maps could be re-
fined further with more tile types such as strategic resources



of later eras or with different terrain (e.g. forests), or could
be refined via evaluations of basic strategic gameplay with
agents such as those of µRTS (Ontañon 2013). Shooter lev-
els could be refined by assigning specific weapons (e.g.
rocket launcher or sniper rifle) to each weapon tile, or by
refining the evaluation via simulations with artificial agents
in the Cube 2 engine as per Cardamone et al. (2011).

Conclusion
This paper proposed a method for imparting generators
with more human-like design processes. Inspired by human
art, design and engineering practices, several methods for
computationally modeling the iterative refinement of ideas,
artwork and designs were put forth. These methods were
demonstrated in different case studies, targeting the creation
of levels for a diverse set of game genres. While case studies
in this paper relied on artificial evolution to optimize certain
heuristics from the literature, the process of refinement can
be used with most generative methods.
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