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Abstract—While the primary focus of affective computing has
been on constructing efficient and reliable models of affect, the
vast majority of such models are limited to a specific task and
domain. This paper, instead, investigates how computational
models of affect can be general across dissimilar tasks; in
particular, in modeling the experience of playing very different
video games. We use three dissimilar games whose players
annotated their arousal levels on video recordings of their
own playthroughs. We construct models mapping ranks of
arousal to skin conductance and gameplay logs via preference
learning and we use a form of cross-game validation to test the
generality of the obtained models on unseen games. Our initial
results comparing between absolute and relative measures of
the arousal annotation values indicate that we can obtain more
general models of player affect if we process the model output
in an ordinal fashion.

1. Introduction

Research on general artificial intelligence (AI) has fo-
cused primarily on computational systems that are able
to perform well on a range of objectively-defined cogni-
tive tasks [1], [2]. Games offer complex yet well-defined
problems for exploring the capacities of general AI and,
as a result, playing games has been the dominant task
for testing general AI capacities over the years. Recent
studies, however, have argued that testing AI only through
its gameplaying abilities is a very narrow perspective to
general intelligence [3], [4]. Evidence from neuroscience
further supports this stance, suggesting that emotion is a key
facilitator of general intelligence [5] and that our affective
abilities are not only admissible but necessary factors of our
general intelligence [6].

Even though the generality of affective interaction ap-
pears to be critical for realizing general AI, the general
capacity of affect models has not been a research focus
within affective computing (AC) yet. The majority of AC
studies focus on the design of reliable and effective models
which are tied to a specific task within a specific domain.
In this paper, instead, we take the first steps towards the
design of affect models that are more general. While we
focus particularly on the domain of video games as one
of the most promising domains for the realization of the

affective loop [7], we investigate how an affect model can be
general across various different tasks (in this case, modeling
the experience of playing various games).

We argue that a model of affect can be general only
if both its input and output representations are expressed
in general terms; in this paper we focus on the output of
such a potential general model. Further, we are grounded
on the evidenced advantages of ordinal annotation [8], [9],
[10] and ordinal modeling of affect [11], [12] in yielding
reliable approximates of the underlying ground truth. Based
on these studies, we argue that the ordinal processing of
affect annotations can provide us with relative expressions of
the ground truth which we view, in turn, as an essential step
towards achieving accurate general models of affect. Our
hypothesis is therefore that processing affect annotations
(i.e., the model output) in a relative (i.e., ordinal) fashion
yields more general affect models than when processing
them in an absolute fashion.

To test our hypothesis we construct computational mod-
els which output a measure of the player’s arousal based
on a player’s gameplay metrics and skin conductance. The
model is tested for its capacity to predict the arousal of a
player across three dissimilar games that vary fundamentally
in terms of game genre, game rules, and overall play experi-
ence. Selecting games that are so different aims to challenge
our models’ general modeling abilities and offer a reliable
benchmark for testing general affect intelligence. The mod-
els are trained via preference learning (using neuroevolution
and support vector machines) on continuous arousal anno-
tations provided by the players while watching their video-
recorded playthroughs. The annotations are converted into
ordinal data by comparing pairs of annotated time windows.
We explore two different metrics for comparing between
time windows and transforming the continuous arousal an-
notations into ordinal data: a) the absolute metric of mean
arousal value and b) the relative metric of the arousal’s
average gradient (average change). The results validate our
hypothesis as models trained on the relative arousal data
were the only ones that manage to surpass the baseline
performance (significantly in some cases), whereas models
built on the absolute mean arousal value, at best, only reach
the baseline. Based on these initial findings we envisage the
application of our approach to building more general affect
models across tasks in other domains besides games.
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2. General Affect Modeling

Modeling affect has received much attention; this sec-
tion focuses on the task of general affect modeling within
the games domain and beyond with an emphasis on the
processing of input (Section 2.1) and output (Section 2.2).

Player experience modeling (PEM) [13] is a rather
active area of study dedicated to building computational
models that capture how players react to certain games,
or the elements and events within them. Although PEM
covers a broad range of player experience states, these are
typically closely linked with affect. Several studies have
attempted to acquire models which predict such states as
‘fun’, ‘challenge,’ and ‘frustration’ (e.g., [14] among many).
Although research in modeling player experience grows in
volume of studies and interest, most of the aforementioned
studies are bound to a specific game or game genre that the
models were trained and tested on [3], [4]. A small number
of researchers have begun pushing towards employing a
more general perspective in affect modeling [3], [4] and a
small number of studies have already made promising steps
towards building general models [15], [16], [17].

2.1. General Input

An affective model able to capture player experience
across games should have general features as its input.
Such general input can be completely game independent,
such as physiological signals. In [15], results showed that
average and minimum heart rate as well as 1-step and 2-step
differences of skin conductance are good general predictors
of self-reported player affect across two different games: a
racing game and a 3D maze ball puzzle game. This paper
uses a variation of the maze ball puzzle game of [15] for
capturing annotations, and also the 1-step differences of skin
conductance as input due to this metric’s evidenced ability
to capture aspects of affect. In a similar study [16], general
gameplay and context-based features were devised as input,
training a model based on game data of a platformer game
and testing the model on a first person shooter game (and
vice-versa). General gameplay features are also captured
in this study, and are shown to be good predictors for
cross-game validation—i.e., testing on an unseen game,
similarly to [16]. The varying results of [16] demonstrate
how challenging general affect modeling across games can
be, which is also corroborated in our findings. Finally,
a recent study [17] compared manually-designed features
against transfer learning on the same two games of [16],
obtaining comparable results as in [16].

2.2. General Output

While the input of any machine learning algorithm
naturally affects its predictive accuracy, the format of the
output (the ground truth of affect) is equally important,
if not more. How to annotate affect is not straightforward
and approaches vary throughout literature. The predominant
approach in affective computing is continuous annotation

(a) Survival Shooter (b) Space Maze (c) Sonancia

Figure 1. Screenshots from the three different games used in this study.

[8], considering affect on a continuous scale. Affect can be
annotated continuously with respect to the affect itself (e.g.,
via Russell’s two-dimensional arousal-valence circumplex
model of affect [18]), with respect to time (e.g., via the
FeelTrace tool [19]), or both.

Continuous annotation provides richer data in terms of
both quality and quantity than discrete annotation [8] but
user fatigue and inter-rater disagreements across continuous
ratings still prove to be a challenge. In order to derive a
general output for affective modeling, relative and rank-
based annotations offer a way to overcome such challenges.
Research has shown that people are able to report emotions
better in relative terms than in absolute terms [10], [20], and
a pairwise rank approach has been used in many studies on
affective modeling in games (e.g., [14], [16]). Models in
this paper similarly learn the pairwise ranks of affect via
preference learning. A real-time discrete rank-based anno-
tation tool has been shown to outperform continuous ratings
in terms of inter-rater agreement, while converting real-time
continuous rating annotations into ranks was also shown to
increase inter-rater agreement [8]. Finally, approaches that
consider relative agreements between real-time continuous
annotations based on the direction of change has proved
advantageous over approaches that consider agreement in
terms of absolute values, both in terms of inter-rater agree-
ment [10], [21] and in terms of constructing accurate models
of affect [22]. For these reasons, in this paper we test and
compare an absolute and a relative approach for processing
the annotation data which, in turn, can be used to test the
general predictive capacity of our models: the first being
the mean value of the arousal trace and the latter being the
average gradient value of the arousal trace.

3. Testbed Games

Three different games developed in Unity 3D (see Fig.
1) were used to test the generality of our affective models:
Survival Shooter (SS) is a game adapted from a tutorial
package of Unity3D. In SS the player has 60 seconds to
shoot down as many zombie toys as possible and avoid
running out of health due to zombies colliding with him.
Space Maze (SM) is a maze-based puzzle game [23] where
the player, controlling a ball, must collect three diamonds,
avoid enemies, and reach a final point before running out
of health (by colliding with enemies) or time (90 seconds).
Sonancia (Son) is a first-person horror game [24] where the
player must traverse rooms until a room with the objective is



Figure 2. Screenshot from the RankTrace [25] annotation software, showing
the recorded playthrough (top) while the entire annotation trace is visible
to the user (bottom) who can control the current arousal value (square).

reached, while avoiding monsters which can chase and kill
the player. Each room has a distinct soundtrack matching a
desired level of tension for that room.

Since our study tests how models can generalize across
dissimilar games, the three games were chosen due to their
differences in genre, game mechanics, camera perspective,
graphics style, and the player’s goal (or end condition).
With regards to genre, SS is a shooter relying on fast-paced
reactions, accurate aiming and constant movement, SM is a
physics puzzle that needs accurate timing of movement, and
Sonancia is a horror game which elicits negative emotions,
disorientation and jump scares. Moreover, the camera per-
spective is top-down in SS, third-person in SM, and first-
person in Sonancia. The dissimilarities between the three
games make them an ideal dataset for testing the capacity
of a model to yield general affective models across all
games. The game situations, the corresponding gameplay
experience and affective responses are so different among
the games that a model might not be able to recognize them,
perceiving them as unknown or as mere noise.

4. Experimental Protocol

Data from all three games was collected using the same
protocol. The SS and SM data collection experiments were
run by the same participants whereas the Sonancia data
collection occurred on a different day with other subjects.
The data collection process took place over two different
settings and at various times throughout the day. However,
much care was taken to ensure the same test conditions.

Participants were first briefed about the experiment and
then filled in a simple demographic questionnaire. An Em-
patica E4 wristband sensor was then fitted on the player’s
left wrist to log physiological signals. The subjects were
then asked to play each of the SS and SM games twice;
the order of which game they played first was randomized
to avoid any order biases. In experiments with Sonancia,
subjects played the same level three times. Before the first

playthrough of each game, the player was shown a screen
with game instructions for 30 seconds, during which a
baseline for the physiological signals was recorded. During
play, game metrics were logged together with a screen-
capture video of the game playthrough using the RankTrace
annotation tool [25]. After each play session, participants
viewed the screen-capture video of their last playthrough
and continuously annotated the level of arousal character-
izing the emotions they recall feeling while playing on an
unbounded scale using a USB wheel controller (PowerMate,
Griffin Technology) to indicate changes (increase or de-
crease) in arousal.1 The RankTrace tool [25]2 can visualize
and process a plot of the arousal signal being annotated with
the USB wheel controller in real-time while the playthrough
video is displayed (see Fig. 2).

Only the arousal dimension of affect was annotated in
this paper. Obtaining valence annotations as well would have
considerably increased the experiment duration and could
thus have negatively impacted the quantity and quality of
data obtained given the available time and resources. It is
also worth noting that the first playthrough of each game
was treated as a tutorial for the players to get used to the
controls of the game and was therefore not considered in
any processing stages described from this point onwards.

5. Data Collection

A total of 25 participants (10 females) provided data for
both SS and SM while 14 participants (5 females) provided
data for Sonancia. After we applied all data preprocessing
steps described in this section, 10, 10 and 11 participant
sessions were considered for SS, SM and Sonancia, re-
spectively. Participants for SS and SM were aged from
19 to 54 (median age 24) and most of them considered
themselves good or expert players of games (70%) while
the rest considered themselves novice or non-gamers. As
for Sonancia, most participants were between 25-34 years
old; 36% of them played games everyday while 45% played
frequently or casually; the rest rarely or never played.

For each game session we record and analyze three types
of data: annotation traces of arousal, gameplay logs and
electrodermal activity. For each data type we follow different
preprocessing and feature extraction methods which are
detailed in the corresponding sections below.

5.1. Annotation Traces

Continuous annotations of arousal were processed on a
playthrough-by-playthrough basis. As a preprocessing step,
we discarded traces where annotated arousal values were
constant. Each playthrough annotation trace was then pro-
cessed via a sliding window approach, splitting the session
into equally-sized time-windows. Several parameters were
considered: the window size in seconds (w), the step size

1. Due to the nature of the horror genre players of Sonancia were asked
to annotate tension which is often used interchangeably with arousal [18].

2. Available at: http://www.autogamedesign.eu/software



(s) as the delay between the start of the current window and
the start of the previous window, and the reaction lag (l) as
the time in seconds by which the annotation was offset to
account for a lag in the annotator’s response. We set default
values to w = 3, s = 3 (i.e., no overlap between consecutive
windows), and l = 0 (i.e., no reaction lag). This resulted in
a total of 139 windows for SS, 227 for SM, and 256 for
Sonancia across all sessions.

Two metrics were calculated for each window: the mean
arousal value µA (absolute metric) and the average gradient
∆1

A (relative metric) of the arousal, i.e., the average first dif-
ferences within the continuous annotation window. Outliers
for each of these metrics were handled by capping values
outside ±3 standard deviations to that value. Further, the
values for each metric were min-max normalized to [0, 1].

In each playthrough, the annotation windows were used
to derive rankings between arousal values within adjacent
windows. We assume that annotators have a limited memory
and are therefore able to compare only their current arousal
to their perceived arousal a few seconds before. The same
windows used for annotation (w=3, s=3, l=0) are applied
to game logs and EDA signals (described below) to derive
rankings of those metrics between adjacent windows.

5.2. Gameplay Logs

Based on general game design properties, we designed
a number of features which we deemed to be general across
multiple types of games. These include: goal-oriented events
G+ (i.e., events which lead the player towards a goal),
goal-opposed events G− (i.e., events which lead the player
away from a goal), the player’s distance traveled D and
time spent moving M , number of enemies engaged with
the player E, time since the start of the game tS , and
level of player fatigue tF (i.e., total game playing time).
Goal-related features G+ and G− were treated as binary,
respectively, indicating whether at least one goal-oriented
or goal-opposing event occurred in the given window. All
other features were treated as scalars.

Unlike the other gameplay features, G+, G−, and E
are derived differently for each of the three games. Goal-
oriented events (contributing to G+) included hitting and
killing enemies for SS, and collecting diamonds for SM.
Goal-opposed events (contributing to G−) for both SS and
SM consisted of collisions with enemies; E in both SS
and SM was the number of enemies visible on screen.
For Sonancia, G+ events were when a player entered a
new room, when monsters lost sight or ceased to chase the
player; G− events were when the monsters hit the player,
when the player died, and when monsters gained sight of
or started to chase the player. Finally, E for Sonancia was
the number of monsters chasing the player.

It is important to note that gameplay features offer the
necessary context for reliably inferring the affective state of
the player. At the same time, however, they are designed
to be as general as possible across games. All gameplay
features were normalized with respect to the respective game
only using Z-score normalization.

5.3. Electrodermal Activity

From the various physiological signals recorded by E4,
we only consider the electrodermal activity (EDA)3 in this
study. EDA is measured in micro Siemens (µS). Considering
only sessions with an EDA signal which was not noisy,
we extracted four descriptive statistics from the EDA signal
for each given window: mean, median, standard deviation,
and variance. We then divided each of these features for
each window by the corresponding features calculated over
the baseline EDA signal. This final feature value repre-
sents the relative change of the statistic with respect to
a particular participant’s baseline. Beyond these standard
statistical features, and inspired by the study of Holmgård
et al. [26], we applied a continuous decomposition analysis
(CDA) [27] to the EDA signal using Ledalab. The outcome
of CDA is the decomposition of the EDA in its phasic and
tonic components. From these components we considered
the mean and the integral of the phasic driver, and the mean
tonic driver of the signal in each window.

6. Preference Learning

This work explores how general models of affect can be
constructed across dissimilar activities and tasks. We thus
use machine learning to discover the mapping between the
annotation traces (model output) and the gameplay and EDA
(model inputs) features. As the data in annotation metrics is
ordinal, we use preference learning [28], [29] to construct
our computational models of arousal across the three games.

Preference learning is a machine learning process by
which the assumed global order underlying a set of pref-
erence ranks is inferred [28]. Preference learning yields a
computational model which maps a set of input features to
an inferred global order [29]. In this paper we use RankSVM
[30] and neuroevolutionary [29] preference learning, apply-
ing sequential forward feature selection to both. For all
experiments reported in this paper we use the Preference
Learning Toolbox [31].

The RankSVM algorithm [30] is used due to its deter-
ministic nature, low computational effort, and capability to
reach high levels of performance. RankSVM is an ordinal
version of the original Support Vector Machine (SVM) that
maps instances to a high-dimensional space and finds a
hyperplane which best splits the data into two groups. In this
paper RankSVM uses a radial basis function (RBF) kernel
with γ = 1. For comparative purposes we also employ
the neuroevolutionary (NE) preference learning algorithm,
which uses artificial evolution to adjust the connection
weights of a neural network which predicts the ordinal
output. It does so by employing a fitness function that
rewards matching of preferences. The algorithm has been
used extensively in the literature (e.g., see [29] among
many). All experiments in this paper used a population size
of 200, a uniform crossover probability of 0.8 and a mutation
probability of 0.1. For selection, we used a Roulette wheel

3. The terms skin conductance and EDA are used interchangeably.



scheme with 40 parents. Finally, we used an elitism strategy
of size 20 and iterated over 50 generations.

To select the most appropriate input features for our
models we use sequential forward selection (SFS). SFS is
a hill climber that starts with an empty set of features and
iteratively adds one feature at a time, by trying all features
in combination with the already selected features, picking
the best combination based on model performance. SFS runs
until the addition of a feature results in performance loss.

7. Results and Analysis

In this section we investigate the impact of two different
ways of processing the arousal annotation data (ground
truth) on the resulting model’s capacity to generalize across
the three game testbeds. On one hand, we calculate an-
notation values based on the absolute measure of mean
annotations (µA) within a window. On the other hand, we
derive the average gradient (∆1

A) of the annotation within
each window which is a relative metric based on first
differences of the annotation data. We use these values as
the outputs of a preference learning mechanism that attempts
to predict which of two adjacent time windows would have
a higher annotation metric. A successful model would be
able to predict whether the arousal level in the next time
window will increase or decrease and by how much. A
total of 46 pairwise ranks for SS, 96 for SM, and 77 for
Sonancia were obtained with µA while 76 for SS, 152 for
SM, and 157 for Sonancia were obtained with ∆1

A. In all
experiments reported below, the baseline performances are
derived by finding which window (at time t or at t − 1)
is preferred more often in all annotations within the test
set. The baseline of the dataset is the highest of these two
numbers, expressed as a percentage over the sum of the two
numbers. Significant differences for both game-specific and
cross-game validation accuracies are assessed via their 95%
confidence interval bounds.

7.1. Game-specific Affective Models

To first validate the algorithms’ ability to learn models
of affect on the games chosen, both EDA and gameplay
features were used as input to learn their mapping with
self-reported arousal on a game-by-game basis. While this
experiment does not advance the vision of a general model
of affect, it nevertheless tests whether there is a game-
specific mapping between the features chosen and arousal.
If such a highly accurate predictive model exists for one
game, perhaps it can be generalizable across two or three
games. Indicatively, using RankSVM with ∆1

A, the obtained
leave-one-out cross-validation performances for SS, SM and
Sonancia are 86.84%, 69.08%, and 75.16%, respectively; all
values are significantly above their corresponding baselines
of 53.95%, 51.97% and 51.59%, respectively. Findings sug-
gest that highly-performing game-specific models of arousal
can be obtained in a straightforward manner. How trivial
would the task be across games though? The next sections
are dedicated to this analysis.

TABLE 1. CROSS-GAME VALIDATION PERFORMANCE (%) AS
DEVIATIONS FROM THE BASELINE, ALONG WITH 95% CONFIDENCE

INTERVALS. SIGNIFICANT IMPROVEMENTS APPEAR IN BOLD.

µA ∆1
A

Baseline 68.1±12 52.5±1.4

EDA
Perceptron (NE) −12.9±2.0 −2.2±9.4
MLP (NE) −8.7±9.3 −2±4.4
RankSVM −20.9±11.4 −5.7±2.9

GAMEPLAY
Perceptron (NE) 0.0±12.0 +5.7±2.7
MLP (NE) +0.9±11.4 +1.5±0.6
RankSVM −6.0±10.3 +1.3±3.8

FUSION
Perceptron (NE) −0.4±12.7 −1.3±9.7
MLP (NE) −0.1±10.3 0.0±6.0
RankSVM −13.6±10.8 +0.7±4.3

7.2. General Affective Models Across Games

How do we evaluate the generality of a model? The
traditional way would be to test the k-fold cross-validation
accuracies obtained within each game. Doing so, however,
would only measure the generality of the affect model within
the game investigated. Instead, we validate the capacity of
our models to predict the arousal level across games, namely
cross-game validation or 3-game cross-validation. In other
words models are trained on two games and predict ranks
in the unseen third game, which acts as the validation set.

Testing via cross-game validation is expected to chal-
lenge any machine learning approach. The level of variance
across games is purposefully very high, making the problem
of general affect modeling very difficult. In addition to
the challenges of interpersonal variations of physiology,
the games are very different in terms of genre, mechanics,
interaction modes and gameplay experience. As a result, the
arousal annotations are expected to vary with respect to all
these factors.

As previously mentioned, building on the ordinal na-
ture of subjective constructs (as emotions), our working
hypothesis is that treating the arousal annotations in a
relative fashion will yield more general models of arousal.
To test this hypothesis, we compare between two metrics
(µA and ∆1

A) across two modalities of input (EDA and
gameplay) and their fusion. In addition, we compare them
across three different preference learned models: a percep-
tron and a multi-layer perceptron with one layer of 10
hidden nodes (MLP)—both trained via neuroevolution—and
the RankSVM method. Feature selection (SFS) was applied
to all algorithms. Averaging across all combinations of
games in the 3-game cross-validation process, the baseline
performance is 68.1% for µA and 52.5% for ∆1

A. Table 1
shows the cross-game validation results in terms of accuracy
improvement over the baseline.

7.2.1. EDA Features. When using only EDA features as
input, the models’ accuracies fail to reach the baselines,
most likely due to the idiosyncratic nature of EDA. Although
sub-par, the best accuracies for both annotation metrics are
achieved by MLP. It is also worth noting that accuracies for
∆1

A are closer to the corresponding baseline than accuracies
for µA, pointing to a better predictive capacity of this output.



7.2.2. Gameplay Features. Based on Table 1, using game-
play features as input seems to yield more general models of
affect independently of the preference learning model used.
The advantage of ∆1

A over µA is consistent with earlier
results for the perceptron model, as it significantly improves
the baseline by 5.7%. For the MLP and RankSVM, ∆1

A
reaches accuracies slightly over the baseline. On the other
hand, mean arousal reaches or slightly exceeds baseline per-
formance only when neuroevolution is used (peceptron and
MLP). RankSVM again yields the poorest model accuracies.
The most frequently selected features for the ∆1

A models are
M , E and tS as opposed to tS and tF for µA. It is likely
that tS and tF are frequently selected for the µA models
since annotated arousal tended to increase (either because
annotators failed to mentally register decreases in arousal
or due to the games’ increasingly arousing nature), making
time alone (measured in tS and tF ) a strong predictor. On
the other hand, ∆1

A achieves the best models by considering
two other gameplay features in addition to tS . In other
words, model generality is so far highest when considering
input features in relative terms.

7.2.3. Gameplay and EDA Fusion. Finally, we fused EDA
and gameplay features as input to the preference learned
model. Based on Table 1, most model accuracies are much
higher than those with EDA features only but do not surpass
those with gameplay input alone. EDA features not only
fail to improve the general capacity of gameplay-based
models but they also worsen it. That said, ∆1

A manages
to slightly pass the baseline for RankSVM. For the first
time, RankSVM also outperforms NE methods with ∆1

A,
implying that the RankSVM might overfit the training games
less when considering ∆1

A and both gameplay and EDA
features. Various features were selected by SFS across the
two annotation metrics and preference learning methods but
the most predominant appear to be tS , EDA mean, and
average phasic driver for µA and G−, E, EDA standard
deviation, and integral of the phasic driver for ∆1

A.

It should be noted that different folds have very different
accuracies based on the confidence intervals of Table 1.
Generally, baseline accuracies for µA are far more varied
(as high as 78.3% when predicting SS). Rarely did any
predictive model surpass the baseline for µA on any fold;
the most successful was the MLP using gameplay features,
which passed the baseline when predicting SS and Sonancia.
On the other hand, ∆1

A generally had smaller deviations,
and more models passed the baseline for this relative metric.
Using gameplay features, the perceptron passed the baseline
in all folds, while the RankSVM and MLP passed the
baseline in two folds. Even with a fusion of inputs, both
the perceptron and the RankSVM pass the baseline in two
folds; the perceptron even passed the baseline in two folds
using EDA features alone. It is obvious that some games
(folds) are easier to predict than others, and the low aver-
age performance of the perceptron with EDA or combined
features is due to a single game (SS in both cases).

7.2.4. Further Experimentation. To further assess how
the annotation metrics impact the generality of cross-game
models, experiments were performed with a longer reaction
lag (l = 1) and deriving ranks with two previous windows
(instead of one). In both cases, gameplay features and NE
again yield the most general models (using an MLP). Fur-
thermore, most ∆1

A models (using gameplay and/or EDA
features) perform 1%-5% over the baseline whereas only
one µA model does, corroborating the superiority of ∆1

A
over µA in building cross-game general affective models.

8. Discussion

Experiments in this paper tested how different ways
of processing affect annotation (output) impact the general
capacity of affect models across very different games and
elicited experiences. This was intended to be a challenging
task, to test the limits of the machine learning algorithms
but more importantly the output used for training. While
training game-specific models of affect was not challenging,
the difficulty of the general affect modeling task was verified
by our experiments. One of the more powerful machine
learning approaches (SVM) tended to overfit to the two
games it was trained on (with training accuracies over 80%
for most cases) and could not generalize well to the unseen
game. In contrast, a simple perceptron which did not reach
as high training accuracies managed to significantly exceed
the baseline in cross-game validation when using gameplay
inputs, although it marginally reached the baseline in most
other cases. However, all results share a common pattern:
processing annotations in a relative fashion (via the average
gradient) is a more powerful approach for yielding general
affect models compared to the absolute (mean) values.

Looking into future work, the obvious next steps have
to explore other general input and output modalities, as
well as expand the corpus of annotation and play data in
these and other games. In terms of general input, it is
obvious that gameplay features (as the best predictors of
annotation in the current experiments) could be expanded to
include more information, including splitting G+ and G−

into more categories. It should be noted that SFS as a greedy
approach of feature selection often failed to select game
features which did not increase performance when added on
their own but could do so if combined with other ‘comple-
mentary’ game features (for instance G+ and G−); testing
other feature selection methods, such as backwards feature
selection or evolutionary feature selection may improve the
model’s accuracy. As a final note, general features could
be extracted from game-specific features via e.g., transfer
learning as in [17]; more ambitiously, such general game
features could be extracted via computer vision applied
on the video playthrough itself, via e.g., deep preference
learning [32]. In terms of the general output, other ways
of processing the annotations of arousal could be explored,
such as the amplitude of the arousal trace in each window
[25]. Moreover, other time windows may capture arousal in
a better way, e.g., by allowing longer time windows with



overlap, or basing time windows on game events [25]. Fi-
nally, increasing the number of games played and annotated
with even more dissimilar game genres could help filter out
certain tendencies in the data (e.g., increasing arousal over
time in survival genres), and allow for an even more rigorous
experimental protocol for cross-game validation.

Our results largely validate our hypothesis within the
games domain. Keeping in mind the ultimate goal of acquir-
ing affect models that generalize across both tasks and do-
mains, however, our hypothesis should also be tested within
other domains. Our positive initial results, coupled with
the evidenced benefits of ordinal approaches in affective
computing [8], [9], [10], [11], [12], [25], leave us optimistic
that similar findings may emerge.

9. Conclusion

This paper tested how self-reported continuous annota-
tions of arousal can be mapped to gameplay and physio-
logical features across games. A total of 31 game videos
of three dissimilar digital games were annotated by the
corresponding players in terms of arousal using an intuitive
wheel-like interface. The annotations were then converted
into ranks of arousal values (mean) and changes (average
gradient) between adjacent time windows of the same anno-
tation trace. Preference learning algorithms attempted to find
the best mapping between ranks of arousal and gameplay
features shared among all three games, EDA data collected
during play, or both. Results show that while constructing
a model of arousal within a single game is straightforward
and accurate, when it comes to using a model trained on
two games to predict an unseen third game, the models
often fail to surpass the baseline. However, when using a
relative approach to capture annotation data (via the average
gradient) rather than an absolute approach (via the mean),
simple neural networks manage to significantly surpass the
baseline when the model considers the gameplay data alone.
The paper’s main findings support our hypothesis that a
relative form of output in an affect model yields more
general models within the same domain.
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